Supporting Information

Rec. Nat. Prod. 13:6 (2019) 468-474

Two New Lignans from Lycopodium japonicum Thunb. Qin Ren ${ }^{1,2}$, Zhenxing Zou ${ }^{2}$, Yang Liu ${ }^{1}$, Xi Chen ${ }^{2}$, Kangping $\mathbf{X u}^{\mathbf{2}}$ and Guishan Tan ${ }^{1,2^{*}}$
${ }^{1}$ Xiangya Hospital of Central South University, Changsha 410008, PR China
${ }^{2}$ Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013,
PR China
Table of Contents
Page
Figure S1: Key ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY and HMBC correlations of compound $\mathbf{1} 4$
Figure S2: Key ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC correlations of compound $2 \quad 4$
Figure S3: HRESIMS of compound 1 5
Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $1\left(\mathrm{DMSO}-d_{6}, 500 \mathrm{MHz}\right) \quad 6$
Figure S5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $1\left(\mathrm{DMSO}-d_{6}, 125 \mathrm{MHz}\right) \quad 7$
Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \quad 8$
Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 2.5 to 4.0 ppm$) \quad 9$
Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 6.0 to 7.2 ppm$) \quad 10$
Figure S9: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \quad 11$
Figure S10: DEPT135 spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) 12$
Figure S11: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \quad 13$
Figure S12: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 2.5 to 5.5
ppm)
Figure S13: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 5.6 to 7.6 ppm)

Figure S14: HSQC spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) 16$
Figure S15: HSQC spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 30 to 80 ppm$) \quad 17$
Figure S16: HSQC spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 90 to 135 ppm$) \quad 18$
Figure S17: HMBC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) 19$
Figure S18: HMBC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 35 to 80 ppm$)$ 20
Figure S19: HMBC spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 90 to 160 ppm$)$ 21
Figure S20: HMBC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 90 to 160 ppm$)$ 22
Figure S21: NOESY spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ 23
Figure S22: Experimental and calculated ECD spectra of compound 1 24
Figure S23: The optimized 10 conformers and equilibrium population of conformers of $7 S$for ECD calculation of compound 124
Figure S24: The optimized 10 conformers and equilibrium population of conformers of $7 R$ for ECD calculation of compound 1 25
Table S1: Stable conformational energy and Maxwell-Boltzmann distribution population of $7 S$ for ECD calculation of compound 1 25
Table S2: Stable conformational energy and Maxwell-Boltzmann distribution population of $7 R$ for ECD calculation of compound 1 26
Figure S25: HRESIMS of compound 2 27
Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 (DMSO- $d_{6}, 500 \mathrm{MHz}$) 28
Figure S27: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\mathrm{DMSO}-d_{6}, 125 \mathrm{MHz}\right)$ 29
Figure S28: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ 30
Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 500 MHz , from 2.5 to 4.0 ppm$)$ 31
Figure S30: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 4.5 to 7.5 ppm$)$ 32
Figure S31: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$ 33
Figure S32: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right.$, from 29 to 80 ppm$)$ 34
Figure S33: DEPT135 spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$ 35
Figure S34: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ 36
Figure S35: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 500 MHz , from 2.5 to 4.4ppm)
Figure S36: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 4.5 to 7.5ppm)38
Figure S37: HSQC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ 39
Figure S38: HSQC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 25 to 105 ppm$)$ 40
Figure S39: HSQC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 105 to 125 ppm$)$ 41
Figure S40: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ 42

Figure S41: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 20 to 95 ppm$)$
Figure S42: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 95 to 125 ppm$) \quad 44$
Figure S43: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 125 to 175 ppm$) \quad 45$
Figure S44: NOESY spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) 46$
Figure $\mathbf{S 4 5}$: CD spectra of compound 2

Figure S1: Key ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC correlations of compound $\mathbf{1}$

Figure S2: Key ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC correlations of compound $\mathbf{2}$

Figure S3: HRESIMS of compound 1

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 (DMSO- $d_{6}, 500 \mathrm{MHz}$)

Figure S5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ (DMSO- $\left.d_{6}, 125 \mathrm{MHz}\right)$

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 2.5 to 4.0 ppm$)$

Figure S8: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 6.0 to 7.2 ppm$)$

Figure S10: DEPT135 spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$

Figure S11: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S12: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 2.5 to 5.5 ppm$)$

Figure S13: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 5.6 to 7.6 ppm$)$

Figure S14: HSQC spectrum of compound $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S15: HSQC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 30 to 80 ppm$)$

Figure S16: HSQC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 90 to 135 ppm$)$

Figure S18: HMBC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 35 to 80 ppm$)$

Figure S19: HMBC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 90 to 160 ppm$)$

Figure S20: HMBC spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 90 to 160 ppm$)$

Figure S21: NOESY spectrum of compound $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S22: Experimental and calculated ECD spectra of compound 1

7S1 (8.70\%)

7S2 (5.13\%)

7S7 (7.58\%)

7S3 (9.47\%)

7S8 (26.16\%)

7S4 (12.29\%)

7S5 (9.79\%)

7S9 (8.21\%)

7 S10 (7.58\%)

Figure S23: The optimized 10 conformers and equilibrium population of conformers of $7 S$ for ECD calculation of compound $\mathbf{1}$

7R1 (13.61\%)

7R6 (10.10\%)

7R2 (22.60\%)

7R3 (6.01\%)

7R4 (6.59\%)

7R8 (6.44\%)

7R9 (11.58\%)

7R10 (2.64\%)

Figure S24: The optimized 10 conformers and equilibrium population of conformers of $7 R$ for ECD calculation of compound $\mathbf{1}$

Table S1: Stable conformational energy and Maxwell-Boltzmann distribution population of $7 S$ for ECD calculation of compound $\mathbf{1}$

conformer	$E(\mathrm{kcal} / \mathrm{mol})$	$P(\%)$
1	-1081940.00260574	8.70
2	-1081939.68941549	5.13
3	-1081940.05274378	9.47
4	-1081940.20673474	12.29
5	-1081940.07200834	9.79
6	-1081939.68583869	5.10
7	-1081939.92046468	7.58
8	-1081940.65389836	26.16
9	-1081939.96790443	8.21
10	-1081939.92046468	7.58

Table S2: Stable conformational energy and Maxwell-Boltzmann distribution population of $7 R$ for ECD calculation of compound $\mathbf{1}$

conformer	$E(\mathrm{kcal} / \mathrm{mol})$	$P(\%)$
1	-1081940.14335623	13.61
2	-1081940.44343151	22.60
3	-1081939.65935776	6.01
4	-1081939.71395114	6.59
5	-1081940.11066296	12.88
6	-1081939.96690042	10.10
7	-1081939.79502543	7.56
8	-1081939.70027142	6.44
9	-1081940.04784921	11.58
10	-1081939.17253551	2.64

Figure S25: HRESIMS of compound 2

Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 (DMSO- $d_{6}, 500 \mathrm{MHz}$)

Figure S27: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\mathrm{DMSO}-d_{6}, 125 \mathrm{MHz}\right)$

Figure S28: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 2.5 to 4.0 ppm$)$

Figure S30: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 4.5 to 7.5 ppm$)$

Figure S31: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$

Figure S32: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right.$, from 29 to 80 ppm$)$

Figure S33: DEPT135 spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$

Figure S34: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S35: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 2.5 to 4.4 ppm$)$

Figure S36: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 4.5 to 7.5 ppm$)$

Figure S37: HSQC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S38: HSQC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 25 to 105 ppm$)$

Figure S39: HSQC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 500 MHz , from 105 to 125 ppm$)$

Figure S40: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S41: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 20 to 95 ppm$)$

Figure S42: HMBC spectrum of compound $\mathbf{2}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 95 to 125 ppm$)$

Figure S43: HMBC spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, from 125 to 175 ppm$)$

Figure S44: NOESY spectrum of compound $2\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$

Figure S45: CD spectra of compound 2

