Supporting Information

Rec. Nat. Prod. 14:3 (2020) 196-200

Two New 2(1*H*)-Pyrazinone Derivatives from the Plant Endophyte *Streptomyces* sp. KIB-H1992

Xiao-Yan Ma^{1,2}, Zhouxin Zhang², Li Wang², Xinjun Hu³, Xingyong Liu^{*1} and Sheng-Xiong Huang^{*2}

¹ Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, and School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China

² State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for

Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China

³ Material Corrosion and Protection Key Laboratory of Sichuan province, and College of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, PR China

Table of Contents	Page						
Figure S1: IR Spectrum of Compound 1							
Figure S2: ESI-MS Spectrum of Compound 1							
Figure S3: HR-ESI-MS Spectrum of Compound 1							
Figure S4: 1H NMR spectrum of compound 1	4						
Figure S5: ¹³ C NMR spectrum of compound 1							
Figure S6: H-H COSY spectrum of compound 1							
Figure S7: HSQC spectrum of compound 1	7						
Figure S8: Expansion of the HSQC spectrum of compound 1							
Figure S9: HMBC spectrum of compound 1	9						
Figure S10: Expansion of the HMBC spectrum 1 of compound 1	10						
Figure S11: Expansion of the HMBC spectrum 2 of compound 1	11						
Figure S12: IR Spectrum of Compound 2	12						
Figure S13: ESI-MS Spectrum of Compound 2	12						
Figure S14: HR-ESI-MS Spectrum of Compound 2	13						
Figure S15: 1H NMR spectrum of compound 2	14						
Figure S16: ¹³ C NMR spectrum of compound 2	15						
Figure S17: H-H COSY spectrum of compound 2	16						
Figure S18: HSQC spectrum of compound 2	17						
Figure S19: HMBC spectrum of compound 2	18						
Table S1. The NMR Data comparison of compound 1 with compounds 3-5.	19						

仪器型号: NICOLET iS10 Software version: OMNIC 9.8.372

Figure S1: IR Spectrum of Compound 1.

Figure S2: ESI-MS Spectrum of Compound 1.

Qualitative Analysis Report

Figure S3: HR-ESI-MS Spectrum of Compound 1.

Figure S4: ¹H NMR spectrum of compound 1 (in CDCl₃, 600 MHz)

¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ 12.33 (1H, brs, NH), 3.37 (1H, hept, J = 6.6 Hz, H-9), 3.02 (1H, hept, J = 7.2 Hz, H-7), 2.30 (3H, s, CH₃-5), 1.32 (6H, d, J = 7.2 Hz, H-8), 1.24 (6H, d, J = 6.6 Hz, H-10).

 13 C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ 159.9 (C-3), 156.7 (C-2), 138.4 (C-6), 127.1 (C-5), 30.6 (C-9), 28.5 (C-7), 20.2 (C-8), 19.9 (C-10), 18.8 (CH₃-5).

Figure S6: H-H COSY spectrum of compound 1 (in CDCl₃)

Figure S7: HSQC spectrum of compound 1 (in CDCl₃)

Figure S8: HSQC spectrum of compound 1 (¹H NMR from 1.00 to 3.60 ppm, ¹³C NMR from 0 to 40 ppm)

Figure S9: HMBC spectrum of compound 1 (in CDCl₃)

Figure S10: HMBC spectrum of compound 1 (¹H NMR from 0.6 to 3.60 ppm, 13 C NMR from 10 to 40 ppm)

Figure S11: HMBC spectrum of compound 1 (¹H NMR from 0.0 to 3.75 ppm, ¹³C NMR from 115 to 195 ppm)

仪器型号: NICOLET iS10 Software version: OMNIC 9.8.372

Figure S12: IR Spectrum of Compound 2.

Qualitative Analysis Report

Figure S14: HR-ESI-MS Spectrum of Compound 2.

Figure S15: ¹H NMR spectrum of compound 2 (in CDCl₃, 600 MHz)

¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ 12.06 12.06 (1H, brs, NH), 4.58 (2H, s, H-5'), 3.41 (1H, hept, J = 6.6 Hz, H-9), 3.01 (1H, hept, J = 7.2 Hz, H-7), 1.33 (6H, d, J = 7.2 Hz, H-8), 1.26 (6H, d, J = 6.6 Hz, H-10).

Figure S16: ¹³C NMR spectrum of compound 2 (in CDCl₃, 150 MHz)

 ^{13}C NMR (150 MHz, CDCl₃): δ_{C} 160.2 (C-3), 157.1 (C-2), 139.3 (C-6), 128.1 (C-5), 60.1 (C-5'), 30.3 (C-9), 27.4 (C-7), 20.5 (C-8), 19.9 (C-10).

Figure S17: H-H COSY spectrum of compound 2 (in CDCl₃)

Figure S18: HSQC spectrum of compound 2 (in CDCl₃)

Figure S19: HMBC spectrum of compound 2 (in CDCl₃)

The NMR Data comparison of compound 1 with compounds 3-4 in Tetrahedron 1995, 51, 7361-7372 and compound 5 in J. Nat. Prod. 2014, 77, 2545-2552.

3,6-diisobutyl-5-methylpyrazin-2(1H)-one (4)

Table S1. ¹H and ¹³C NMR data of compound 1, 3-5 in CDCl₃.

Position	1		3		4		5	
	δc	$\delta_{ m H}$	δc	$\delta_{ m H}$	δc	$\delta_{ m H}$	δc	$\delta_{ m H}$
	(ppm)	(ppm, J in Hz)	(ppm)	(ppm, J in Hz)	(ppm)	(ppm, J in Hz)	(ppm)	(ppm, J in Hz)
1		12.33 (1H, brs)		13.4 (IH, brs)		13.2 (lH, brs)		11.06 (lH, brs)
2	156.7		159.8		157.8		156.6	
3	159.9		157.2		155.7		154.7	
5	127.1		129.5		129.5		130.5	
5-Me/5'	18.8	2.30 (3H, s)	18.9	2.28 (3H, s)	18.7	2.29 (3H, s)	19.1	2.26 (3H, s)
6	138.4		133.7		134.1		136.1	
9	30.6	3.37 (1H, hept, J	30.6	3.37 (lH, heptet,				
		= 6.6 Hz)		J=6.9 Hz)				
10	19.9	1.24 (6H, d, J =	20.0	1.25 (6H, d, J =				
		6.6 Hz)		6.9 Hz)				