Supporting Information

Org.Commun. 13:2 (2020) 65-78

Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters

Arif Baran^{1*}, Emel Karakılıç¹, Özlem Faiz² and Furkan Özen¹

¹Department of Chemistry, Faculty of Arts and Sciences, Sakarya University,

54187, Sakarya, Türkiye

²Department of Chemistry, Faculty of Arts and Sciences, ²RTE University

53100, Rize, Türkiye

Table of Contents	Page
Figure S1: ¹ H NMR spectrum of compound 1 (in CDCl ₃)	2
Figure S2: ¹³ C NMR spectrum of compound 1 (in CDCl ₃)	3
Figure S3: FT-IR spectrum of compound 1	4
Figure S4: ¹ H NMR spectrum of compound 2 (in CDCl ₃ / CD ₃ OD: 5/1)	5
Figure S5: ¹³ C NMR spectrum of compound 2 (in CDCl ₃ / CD ₃ OD: 5/1)	6
Figure S6: FT-IR spectrum of compound 2	7
Figure S7: ¹ H NMR spectrum of compound 3 (in CDCl3)	8
Figure S8: ¹³ C NMR spectrum of compound 3 (in CDCl ₃)	9
Figure S9: DEPT NMR spectrum of compound 3 (in CDCl ₃)	10
Figure S10: APT NMR spectrum of compound 3 (in CDCl ₃)	11
Figure S11: COSY spectrum of compound 3 (in CDCl ₃)	12
Figure S12: HETCOR spectrum of compound 3 (in CDCl ₃)	13
Figure S13: FT-IR spectrum of compound 3	14
Figure S14: UV-Vis spectrum of compound 4a (in DMF)	15
Figure S15: MALDI-TOF mass spectrum of compound 4a	16
Figure S16: FT-IR spectrum of compound 4a	17
Figure S17: UV-Vis spectrum of compound 4b (in DMF)	18
Figure S18: MALDI-TOF mass spectrum of compound 4b	19
Figure S19: FT-IR spectrum of compound 4b	20
S1: Structure Elucidation of Compounds 1-2	21

Figure S1: ¹H NMR spectrum of compound 1 in (CDCl₃)

Figure S2: ¹³C NMR spectrum of compound 1 (in CDCl₃)

© 2020 ACG Publications. All rights reserved.

Figure S3: FT-IR spectrum of compound 1

© 2020 ACG Publications. All rights reserved.

Figure S4: ¹H NMR spectrum of compound 2 (in CDCl₃/ CD₃OD: 5/1)

Figure S5: ¹³C NMR of spectrum of compound 2 (in CDCl₃ / CD₃OD: 5/1)

© 2020 ACG Publications. All rights reserved.

Figure S6. FT-IR spectrum of compound 2

© 2020 ACG Publications. All rights reserved.

Figure S7: ¹H NMR spectrum of compound 3 (in CDCl₃)

© 2020 ACG Publications. All rights reserved.

Figure S8: ¹³C NMR of spectrum of compound 3 (in CDCl₃)

© 2020 ACG Publications. All rights reserved.

© 2020 ACG Publications. All rights reserved.

Figure S10: APT spectrum of compound 3 (in CDCl₃)

© 2020 ACG Publications. All rights reserved.

Figure S11: COSY spectrum of compound 3 (in CDCl₃)

© 2020 ACG Publications. All rights reserved.

Figure S12: HETCOR spectrum of compound 3 (in CDCl3)

@ 2020 ACG Publications. All rights reserved.

Figure S13: FT-IR spectrum of compound 3

© 2020 ACG Publications. All rights reserved.

Figure S14: UV-Vis spectrum of compound 4a (in DMF)

© 2020 ACG Publications. All rights reserved.

Figure S15: MALDI-TOF mass spectrum of compound 4a in 1,8,9-anthracenetriol

© 2020 ACG Publications. All rights reserved.

Figure S16: FT-IR spectrum of compound 4a

Figure S17: UV-Vis spectrum of compound 4b (in DMF)

Figure S18: MALDI-TOF mass spectrum of 4b in 1,8,9-anthracenetriol

Figure S19: FT-IR spectrum of compound 4b

© 2020 ACG Publications. All rights reserved.

S1: Structure Elucidation of Compounds 1-2

In the IR spectra of 1 (see Figure S3), Ar-H and aliphatic-H bands were observed at 3362 and 2829 cm⁻¹, respectively. In particular, the strong peak at 1685 cm⁻¹ belongs to the aldehyde carbonyl group. The peaks at 1598 cm⁻¹, 1572 cm⁻¹ and 1508 cm⁻¹ were attributed to the carbon-carbon double bands of the aromatic ring. The most prominent peak at 1018 cm⁻¹ is the C-O-C band.

benzyloxy)benzaldehyde (1)

¹H NMR spectra of compound **1** exhibited the CHO proton at 9.86 ppm as a singlet. While H_2/H_6 of the aromatic ring resonated as an AA' part of AA'BB' system giving quasi doublet at 7.82 ppm, H_3/H_5 resonated as BB' part of AA'BB' system giving doublet at 7.15 ppm. The resonance signal belongs to 5 H of phenyl appeared as multiplet between 7.48 – 7.32 ppm. The resonance signal of PhCH₂O gave a broad singlet at 5.12 ppm (Figure S1) Additionally, all ¹³C-NMR signals are in agreement with structure (Figure S2).

IR spectra of compound **2** (Figure S6) exhibited hydroxyl stretching bands at 3059 and 3049 cm⁻¹. The aliphatic C-H strength was observed at 2849 cm⁻¹. While the C = O group of the aldehyde disappeared, the new peaks belong to the C=O and C = C bonds of the new compound appeared at 1641 cm⁻¹, 1597 cm⁻¹ and 1586 cm⁻¹.

(*E*)-3-(4-(benzyloxy)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2)

The resonance signal of H₂'/H₆' appeared as an AA' part of AA'BB' system as a quasi doublet at 7.97 ppm, and H₃'/H₅' gave BB' part of AA'BB' system as a quasi doublet at 7.10 ppm. Similarly, while H₂"/H₆" arose as an AA' part of AA' BB' system as a quasi doublet at 7.62 ppm, H₃"/H₅" were resonated as a quasi doublet as BB' part of AA' BB' system at 6.92 ppm. H₃ appeared as a doublet at 7.76 ppm ($J_{6,7}$ = 15.0 Hz). 5 H of phenyl ring and H₂ resonated as a multiplet between 7.51-7.35 ppm and OCH₂ appeared as a singlet at 5.12 ppm (Figure S4). ¹³C- NMR resonance frequencies of 16 carbons are fully compatible with the structure (Figure S5).