Isolation, Characterization and Antioxidant, Tyrosinase Inhibitory Activities of Constituents from the Flowers of *Cercis glabra* ‘Spring-1’

Penghua Shu¹*, Yamin Li¹, Yuehui Luo¹, Mengzhu Yu¹, Yingying Fei¹, Wanrong Liu¹, Yuan Yang¹, Xialan Wei², Yuhuan Zhang³, Tieyao Tu⁴ and Lin Zhang³*

¹ Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, P. R. China
² School of Information Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
³ Henan Spring Garden Landscape Eengineering CO., LTD, Zhengzhou, Henan 450000, P. R. China
⁴ South China Botanical Garden Chinese Academy of Sciences, Guangzhou, 510650, P. R. China

Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1</td>
<td>Isolation procedures of compounds 1–12</td>
<td>2</td>
</tr>
<tr>
<td>Figure S2</td>
<td>HR-ESI-MS spectrum of 1</td>
<td>3</td>
</tr>
<tr>
<td>Figure S3</td>
<td>IR spectrum of 1</td>
<td>4</td>
</tr>
<tr>
<td>Figure S4</td>
<td>UV spectrum of 1 in CHCl₃</td>
<td>5</td>
</tr>
<tr>
<td>Figure S5</td>
<td>¹H NMR spectrum (400 MHz) of 1 in CDCl₃</td>
<td>6</td>
</tr>
<tr>
<td>Figure S6</td>
<td>¹³C NMR spectrum (100 MHz) of 1 in CDCl₃</td>
<td>7</td>
</tr>
<tr>
<td>Figure S7</td>
<td>DEPT 135 spectrum of 1 in CDCl₃</td>
<td>8</td>
</tr>
<tr>
<td>Figure S8</td>
<td>HSQC spectrum of 1 in CDCl₃</td>
<td>9</td>
</tr>
<tr>
<td>Figure S9</td>
<td>¹H-¹H COSY spectrum of 1 in CDCl₃</td>
<td>10</td>
</tr>
<tr>
<td>Figure S10</td>
<td>HMBC spectrum of 1 in CDCl₃</td>
<td>11</td>
</tr>
<tr>
<td>Figure S11</td>
<td>NOESY spectrum of 1 in CDCl₃</td>
<td>12</td>
</tr>
<tr>
<td>Figure S12</td>
<td>¹H NMR spectrum (400 MHz) of 1a in CDCl₃</td>
<td>13</td>
</tr>
<tr>
<td>Figure S13</td>
<td>¹³C NMR spectrum (100 MHz) of 1a in CDCl₃</td>
<td>14</td>
</tr>
<tr>
<td>Figure S14</td>
<td>¹H NMR spectrum (400 MHz) of 2 in DMSO-d₆</td>
<td>15</td>
</tr>
<tr>
<td>Figure S15</td>
<td>¹H NMR spectrum (400 MHz) of 3 in DMSO-d₆</td>
<td>16</td>
</tr>
<tr>
<td>Figure S16</td>
<td>¹H NMR spectrum (400 MHz) of 4 in DMSO-d₆</td>
<td>17</td>
</tr>
<tr>
<td>Figure S17</td>
<td>¹H NMR spectrum (400 MHz) of 5 in DMSO-d₆</td>
<td>18</td>
</tr>
<tr>
<td>Figure S18</td>
<td>¹H NMR spectrum (400 MHz) of 6 in CD₃OD</td>
<td>19</td>
</tr>
<tr>
<td>Figure S19</td>
<td>¹H NMR spectrum (400 MHz) of 7 in DMSO-d₆</td>
<td>20</td>
</tr>
<tr>
<td>Figure S20</td>
<td>¹H NMR spectrum (400 MHz) of 8 in DMSO-d₆</td>
<td>21</td>
</tr>
<tr>
<td>Figure S21</td>
<td>¹H NMR spectrum (400 MHz) of 9 in DMSO-d₆</td>
<td>22</td>
</tr>
<tr>
<td>Figure S22</td>
<td>¹H NMR spectrum (400 MHz) of 10 in DMSO-d₆</td>
<td>23</td>
</tr>
<tr>
<td>Figure S23</td>
<td>¹H NMR spectrum (400 MHz) of 11 in CDCl₃</td>
<td>24</td>
</tr>
<tr>
<td>Figure S24</td>
<td>¹H NMR spectrum (400 MHz) of 12 in Pyr-d₅</td>
<td>25</td>
</tr>
</tbody>
</table>

© 2020 ACG Publications. All rights reserved.
\textit{Cercis glabra} 'Spring-1' Flowers (3.2 kg)

95\% EtOH

EtOH extract (197.4 g)

Fractionation

petroleum ether extract

EtOAc extract (34 g)

π-BuOH extract

silica gel CC

CH_2Cl_2-MeOH

(100:0–5:1)

Fraction F1

(9.8 g)

Fraction F3

(4.5 g)

Fraction F5

(2.6 g)

silica gel CC

CH_2Cl_2-MeOH

(100:0–40:1)

Fraction F1-1

Fraction F1-5

RP-C_{18} CC

MeOH-H$_2$O

(80:20)

11 (13.2 mg)

10 (8.2 mg)

Sephadex LH-20 CC

CH_2Cl_2

Sephadex LH-20 CC

CH_2Cl_2

Sephadex LH-20 CC

MeOH

silica gel CC

CH_2Cl_2-MeOH

(25:1–10:1)

Fraction F5-1

Fraction F5-2

Fraction F5-3

1 (23.0 mg)

2 (16.8 mg)

3 (21.7 mg)

4 (19.4 mg)

5 (32.0 mg)

6 (18.5 mg)

Sephadex LH-20 CC

CH_2Cl_2-MeOH

(1:1)

RP-C_{18} CC

MeOH-H$_2$O

(65:35)

8 (6.7 mg)

9 (5.4 mg)

12 (17.3 mg)

11 (13.2 mg)

10 (8.2 mg)

$\text{Figure S1: Isolation procedures of compounds 1–12}$
Figure S2: HR-ESI-MS spectrum of 1
Figure S3: IR spectrum of 1
Figure S4: UV spectrum of 1 in CHCl₃
Figure S5: 1H NMR spectrum (400 MHz) of 1 in CDCl$_3$
Figure S6: 13C NMR spectrum (100 MHz) of 1 in CDCl$_3$
Figure S7: DEPT 135 spectrum of 1 in CDCl₃
Figure S8: HSQC spectrum of 1 in CDCl₃
Figure S9: 1H-1H COSY spectrum of 1 in CDCl$_3$
Figure S10: HMBC spectrum of 1 in CDCl$_3$
Figure S11: NOESY spectrum of 1 in CDCl₃
Figure S12: 1H NMR spectrum (400 MHz) of 1a in CDCl$_3$
Figure S13: 13C NMR spectrum (100 MHz) of 1a in CDCl$_3$
Figure S14: 1H NMR spectrum (400 MHz) of 2 in DMSO-d_6
Figure S15: 1H NMR spectrum (400 MHz) of 3 in DMSO-d_6.
Figure S16: 1H NMR spectrum (400 MHz) of 4 in DMSO-d_6
Figure S17: 1H NMR spectrum (400 MHz) of 5 in DMSO-d_6
Figure S18: 1H NMR spectrum (400 MHz) of 6 in CD$_3$OD
Figure S19: 1H NMR spectrum (400 MHz) of 7 in DMSO-d_6
Figure S20: 1H NMR spectrum (400 MHz) of 8 in DMSO-d_6
Figure S21: 1H NMR spectrum (400 MHz) of 9 in DMSO-d_6
Figure S22: 1H NMR spectrum (400 MHz) of 10 in DMSO-d_6
Figure S23: 1H NMR spectrum (400 MHz) of 11 in CDCl$_3$
Figure S24: 1H NMR spectrum (400 MHz) of 12 in Pyr-d_5