Supporting Information

Rec. Nat. Prod. 15:4 (2021) 254-260

Isolation, Characterization and Antioxidant, Tyrosinase Inhibitory Activities of Constituents from the Flowers of *Cercis* glabra 'Spring-1'

Penghua Shu^{1*} Yamin Li¹, Yuehui Luo¹, Mengzhu Yu¹, Yingying Fei¹, Wanrong Liu¹, Yuan Yang¹, Xialan Wei², Yuhuan Zhang³, Tieyao Tu⁴ and Lin Zhang^{3*}

¹ Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, P. R. China

² School of Information Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China

³ Henan Spring Garden Landscape Eegineering CO.,LTD, Zhengzhou, Henan 450000, P. R. China

⁴ South China Botanical Garden Chinese Academy of Sciences, Guangzhou, 510650, P. R. China

Table of Contents	Page								
Figure S1: Isolation procedures of compounds 1–12									
Figure S2: HR-ESI-MS spectrum of 1	3								
Figure S3: IR spectrum of 1	4								
Figure S4: UV spectrum of 1 in CHCl ₃	5								
Figure S5: ¹ H NMR spectrum (400 MHz) of 1 in CDCl ₃	6								
Figure S6: ¹³ C NMR spectrum (100 MHz) of 1 in CDCl ₃	7								
Figure S7: DEPT 135 spectrum of 1 in CDCl ₃	8								
Figure S8: HSQC spectrum of 1 in CDCl ₃	9								
Figure S9: ¹ H- ¹ H COSY spectrum of 1 in CDCl ₃	10								
Figure S10: HMBC spectrum of 1 in CDCl ₃	11								
Figure S11: NOESY spectrum of 1 in CDCl ₃	12								
Figure S12: ¹ H NMR spectrum (400 MHz) of 1a in CDCl ₃	13								
Figure S13: ¹³ C NMR spectrum (100 MHz) of 1a in CDCl ₃	14								
Figure S14: ¹ H NMR spectrum (400 MHz) of 2 in DMSO- d_6	15								
Figure S15: ¹ H NMR spectrum (400 MHz) of 3 in DMSO- d_6	16								
Figure S16: ¹ H NMR spectrum (400 MHz) of 4 in DMSO- d_6	17								
Figure S17: ¹ H NMR spectrum (400 MHz) of 5 in DMSO- d_6	18								
Figure S18: ¹ H NMR spectrum (400 MHz) of 6 in CD ₃ OD	19								
Figure S19: ¹ H NMR spectrum (400 MHz) of 7 in DMSO- d_6	20								
Figure S20: ¹ H NMR spectrum (400 MHz) of 8 in DMSO- d_6	21								
Figure S21: ¹ H NMR spectrum (400 MHz) of 9 in DMSO- d_6	22								
Figure S22: ¹ H NMR spectrum (400 MHz) of 10 in DMSO- d_6	23								
Figure S23: ¹ H NMR spectrum (400 MHz) of 11 in CDCl ₃	24								
Figure S24: ¹ H NMR spectrum (400 MHz) of 12 in Pyr- d_5	25								

Figure S1: Isolation procedures of compounds 1–12

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 70 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used:

C: 26-26 H: 0-100 N: 0-2 O: 0-11 Na: 0-1 1 45 (0.427) QT (4) 1: TOF MS ES+

																			1	00e+003		
443.														.3730								
100 75.0	375												156.228		- / -							
75	100	125	15	0 1	75	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600
Minimum: Maximum:				20.0	5	.0	$^{-1.5}_{50.0}$															
Mass	Ca	lc. Ma	SS	mDa	Р	PM	DBE	i-FI1	Ne	orm	Conf(%)	Formu	la									
443. 3730	44	3.3736		-0.6		1.4	1.5	24.5	n,	′a	n/a	С26 Н	51 05									

Figure S2: HR-ESI-MS spectrum of 1

© 2021 ACG Publications. All rights reserved.

Page 1

Figure S3: IR spectrum of 1

Figure S4: UV spectrum of 1 in CHCl₃

Figure S5: ¹H NMR spectrum (400 MHz) of 1 in CDCl₃

Figure S6: ¹³C NMR spectrum (100 MHz) of 1 in CDCl₃

Figure S7: DEPT 135 spectrum of 1 in CDCl₃

Figure S8: HSQC spectrum of 1 in CDCl₃

Figure S9: ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S10: HMBC spectrum of 1 in CDCl₃

Figure S11: NOESY spectrum of 1 in CDCl₃

Figure S12: ¹H NMR spectrum (400 MHz) of 1a in CDCl₃

Figure S13: ¹³C NMR spectrum (100 MHz) of 1a in CDCl₃

Figure S14: ¹H NMR spectrum (400 MHz) of 2 in DMSO-d₆

Figure S15: ¹H NMR spectrum (400 MHz) of 3 in DMSO-*d*₆

 $\ensuremath{\mathbb{C}}$ 2021 ACG Publications. All rights reserved.

Figure S16: ¹H NMR spectrum (400 MHz) of 4 in DMSO- d_6

Figure S17: ¹H NMR spectrum (400 MHz) of 5 in DMSO-*d*₆

Figure S18: ¹H NMR spectrum (400 MHz) of 6 in CD₃OD

Figure S19: ¹H NMR spectrum (400 MHz) of 7 in DMSO-*d*₆

Figure S20: ¹H NMR spectrum (400 MHz) of 8 in DMSO- d_6

Figure S21: ¹H NMR spectrum (400 MHz) of 9 in DMSO- d_6

Figure S22: ¹H NMR spectrum (400 MHz) of 10 in DMSO-d₆

Figure S23: ¹H NMR spectrum (400 MHz) of 11 in CDCl₃

Figure S24: ¹H NMR spectrum (400 MHz) of 12 in Pyr- d_5