Supporting Information

Rec. Nat. Prod. 15:4 (2021) 281-292

Biotransformation of Perrottetin F by Aspergillus niger:

New Bioactive Secondary Metabolites

Danka Bukvicki^{1,2,3,*}, Miroslav Novakovic^{2,4}, Tatjana Ilic-Tomic⁵, Jasmina Nikodinovic-Runic, Nina Todorovic⁵, Milan Veljic¹ and Yoshinori Asakawa²

¹University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", 11000 Belgrade, Serbia

²Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan

³Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 46, 40127 Bologna, Italy

⁴University of Belgrade, Institute of Chemistry Technology and Metallurgy, 11 000 Belgrade, Serbia. ⁵Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade,

Serbia

Table of Contents	Page					
Figure S1: ¹ H NMR spectrum of perrottetin F (1) (from $\delta_{\rm H}$ 6.00 ppm to $\delta_{\rm H}$ 7.20 ppm)	3					
Figure S2: ¹ H NMR spectrum of perrottetin F (1) (from $\delta_{\rm H}$ 2.53 ppm to $\delta_{\rm H}$ 2.95 ppm)	3					
Figure S3: ¹³ C NMR spectrum of perrottetin F (1) (from $\delta_{\rm C}$ 110 ppm to $\delta_{\rm C}$ 163 ppm)	4					
Figure S4: HSQC spectrum of perrottetin F (1) (from δ_C 95 ppm to δ_C 140 ppm and from δ_H 6.00 ppm to 7.22 ppm)	4					
Figure S5: HMBC spectrum of perrottetin F (1) (from $\delta_{\rm C}$ 100 ppm to $\delta_{\rm C}$ 170 ppm and from $\delta_{\rm H}$ 2.00	5					
ppm to 7.55 ppm) $\mathbf{F}(1)$ (for 5 27 ppm to 5 41 ppm to 5 (10 ppm)	F					
Figure S6: HMBC spectrum of perrottetin F (1) (from $\partial_C 37$ ppm to $\partial_C 41$ ppm and from $\partial_H 6.10$ ppm to 7.15 ppm)	5					
Figure S7: HRESIMS spectrum of compound 2	6					
Figure S8: ¹ H NMR spectrum of compound 2 (from $\delta_{\rm H}$ 2.35 ppm to $\delta_{\rm H}$ 7.20 ppm)						
Figure S9: ¹ H NMR spectrum of compound 2 (from $\delta_{\rm H}$ 5.85 ppm to $\delta_{\rm H}$ 7.15 ppm)	7					
Figure S10: ¹³ C NMR spectrum of compound 2 (from $\delta_{\rm C}$ 111 ppm to $\delta_{\rm C}$ 160 ppm)	8					
Figure S11: ¹³ C NMR spectrum of compound 2 (from δ_C 33 ppm to δ_C 84 ppm)	8					
Figure S12: COSY spectrum of compound 2 (from $\delta_{\rm H}$ 5.85 ppm to $\delta_{\rm H}$ 7.15 ppm)	9					
Figure S13: COSY spectrum of compound 2 (from $\delta_{\rm H}$ 2.40 ppm to $\delta_{\rm H}$ 5.00 ppm)	9					
Figure S14: NOESY spectrum of compound 2 (from $\delta_{\rm H}$ 4.30 ppm to $\delta_{\rm H}$ 7.22 ppm)	10					
Figure S15: HSQC spectrum of compound 2 (from $\delta_{\rm C}$ 106 ppm to $\delta_{\rm C}$ 137 ppm and from $\delta_{\rm H}$ 6.04 ppm to 7.27 ppm)	10					
Figure S16: HMBC spectrum of compound 2 (from δ_C 104 ppm to δ_C 164 ppm and from δ_H 5.65 ppm to 7.40 ppm)	11					
Figure S17: HMBC spectrum of compound 2 (from δ_C 32 ppm to δ_C 91 ppm and from δ_H 5.82 ppm to	11					
7.60 ppm)						
Figure S18: HMBC spectrum of compound 2 (from δ_C 34 ppm to δ_C 156 ppm and from δ_H 2.25 ppm	12					
to 5.05 ppm)	12					
Figure S19: IRESIMS spectrum of compound 3 Figure S20: ¹ H NMR spectrum of compound 3 (from $\delta_{\rm H}$ 2.45 ppm to 7.35 ppm)	13 14					

Figure S21: ¹ H NMR spectrum of compound 3 (from $\delta_{\rm H}$ 5.75 ppm to 7.31 ppm)	14
Figure S22: ¹³ C NMR spectrum of compound 3 (from δ_C 35 ppm to δ_C 165 ppm)	15
Figure S23: COSY spectrum of compound 3 (from $\delta_{\rm H}$ 4.20 ppm to 7.50 ppm)	15
Figure S24: NOESY spectrum of compound 3 (from $\delta_{\rm H}$ 5.90 ppm to 7.55 ppm)	16
Figure S25: HSQC spectrum of compound 3 (from δ_C 105 ppm to δ_C 138 ppm and from δ_H 5.94 ppm	16
to 7.45 ppm)	
Figure S26: HMBC spectrum of compound 3 (from δ_C 14 ppm to δ_C 180 ppm and from δ_H 5.93 ppm	17
to 7.52 ppm)	
Figure S27: HMBC spectrum of compound 3 (from δ_C 12 ppm to δ_C 170 ppm and from δ_H 2.24 ppm	17
to 4.81 ppm)	
Figure S28: HRESIMS spectrum of compound 4	18
Figure S29: ¹ H NMR spectrum of compound 4 (from $\delta_{\rm H}$ 6.40 ppm to 7.12 ppm)	19
Figure S30: ¹³ C NMR spectrum of compound 4 (from $\delta_{\rm C}$ 110 ppm to $\delta_{\rm C}$ 161 ppm)	19
Figure S31: COSY spectrum of compound 4 (from $\delta_{\rm H}$ 6.25 ppm to 7.33 ppm)	20
Figure S32: NOESY spectrum of compound 4 (from $\delta_{\rm H}$ 6.18 ppm to 7.40 ppm)	20
Figure S33: HSQC spectrum of compound 4 (from δ_C 107 ppm to δ_C 137 ppm and from δ_H 6.30 ppm	21
to 7.35 ppm)	
Figure S34: HMBC spectrum of compound 4 (from δ_C 107 ppm to δ_C 167 ppm and from δ_H 6.05 ppm	21
to 7.45 ppm)	
Figure S35: HMBC spectrum of compound 4 (from δ_C 33 ppm to δ_C 43.5 ppm and from δ_H 6.25 ppm	22
to 7.32 ppm)	
Figure S36: HMBC spectrum of compound 4 (from δ_C 106 ppm to δ_C 155 ppm and from δ_H 2.24 ppm	22
to 4.81 ppm)	
Figure S37: Effects of perrottetin F (1) and biotransformed products ($250 \ \mu g/disc$) on the production of violacein by <i>C. violaceum</i> CV026 (A) and prodigiosin by <i>S. marcescens</i> (B). The control in the bioassay was DMSO	23

Figure S1: ¹H NMR spectrum of perrottetin F (1) (from $\delta_{\rm H}$ 6.00 ppm to $\delta_{\rm H}$ 7.20 ppm)

Figure S2: ¹H NMR spectrum of perrottetin F (1) (from $\delta_{\rm H}$ 2.53 ppm to $\delta_{\rm H}$ 2.95 ppm)

Figure S3: ¹³C NMR spectrum of perrottetin F (1) (from δ_C 110 ppm to δ_C 163 ppm)

Figure S4: HSQC spectrum of perrottetin F (1) (from $\delta_{\rm C}$ 95 ppm to $\delta_{\rm C}$ 140 ppm and from $\delta_{\rm H}$ 6.00 ppm to 7.22 ppm)

Figure S5: HMBC spectrum of perrottetin F (1) (from $\delta_{\rm C}$ 100 ppm to $\delta_{\rm C}$ 170 ppm and from $\delta_{\rm H}$ 2.00 ppm to 7.55 ppm)

Figure S6: HMBC spectrum of perrottetin F (1) (from δ_C 37 ppm to δ_C 41 ppm and from δ_H 6.10 ppm to 7.15 ppm)

Figure S7: HRESIMS spectrum of compound 2

Figure S8: ¹H NMR spectrum of compound **2** (from $\delta_{\rm H}$ 2.35 ppm to $\delta_{\rm H}$ 7.20 ppm)

Figure S9: ¹H NMR spectrum of compound **2** (from $\delta_{\rm H}$ 5.85 ppm to $\delta_{\rm H}$ 7.15 ppm)

Figure S10: ¹³C NMR spectrum of compound **2** (from $\delta_{\rm C}$ 111 ppm to $\delta_{\rm C}$ 160 ppm)

Figure S11: ¹³C NMR spectrum of compound **2** (from δ_C 33 ppm to δ_C 84 ppm)

Figure S12: COSY spectrum of compound **2** (from $\delta_{\rm H}$ 5.85 ppm to $\delta_{\rm H}$ 7.15 ppm)

Figure S13: COSY spectrum of compound 2 (from $\delta_{\rm H}$ 2.40 ppm to $\delta_{\rm H}$ 5.00 ppm)

Figure S14: NOESY spectrum of compound **2** (from $\delta_{\rm H}$ 4.30 ppm to $\delta_{\rm H}$ 7.22 ppm)

Figure S15: HSQC spectrum of compound **2** (from $\delta_{\rm C}$ 106 ppm to $\delta_{\rm C}$ 137 ppm and from $\delta_{\rm H}$ 6.04 ppm to 7.27 ppm)

Figure S16: HMBC spectrum of compound **2** (from δ_C 104 ppm to δ_C 164 ppm and from δ_H 5.65 ppm to 7.40 ppm)

Figure S17: HMBC spectrum of compound **2** (from δ_C 32 ppm to δ_C 91 ppm and from δ_H 5.82 ppm to 7.60 ppm)

Figure S18: HMBC spectrum of compound **2** (from δ_C 34 ppm to δ_C 156 ppm and from δ_H 2.25 ppm to 5.05 ppm)

Figure S19: HRESIMS spectrum of compound 3

Figure S20: ¹H NMR spectrum of compound **3** (from $\delta_{\rm H}$ 2.45 ppm to 7.35 ppm)

Figure S21: ¹H NMR spectrum of compound **3** (from $\delta_{\rm H}$ 5.75 ppm to 7.31 ppm)

Figure S22: ¹³C NMR spectrum of compound **3** (from δ_C 35 ppm to δ_C 165 ppm)

Figure S23: COSY spectrum of compound **3** (from $\delta_{\rm H}$ 4.20 ppm to 7.50 ppm)

Figure S24: NOESY spectrum of compound **3** (from $\delta_{\rm H}$ 5.90 ppm to 7.55 ppm)

Figure S25: HSQC spectrum of compound **3** (from $\delta_{\rm C}$ 105 ppm to $\delta_{\rm C}$ 138 ppm and from $\delta_{\rm H}$ 5.94 ppm to 7.45 ppm)

Figure S26: HMBC spectrum of compound **3** (from $\delta_{\rm C}$ 14 ppm to $\delta_{\rm C}$ 180 ppm and from $\delta_{\rm H}$ 5.93 ppm to 7.52 ppm)

Figure S27: HMBC spectrum of compound **3** (from δ_C 12 ppm to δ_C 170 ppm and from δ_H 2.24 ppm to 4.81 ppm)

Sa In Ac IR Co	ita File mple Type strument Name q Method M Calibration Statu mment	MN-8, Samp Instru Mika, s	_AF_70V_neg2 le ment 1 Skrining_MS_ 55	d NF_70V_neg.m	Sample Name Position User Name Acquired Time DA Method	MN-8 P1-E8 12/4/2017 4:26:08 PM auto ms ms_3172014_AC	11c 1 (LOMPOUN	DY
Sa Ac Ve	mple Group quisition SW rsion	6200 series TOI Q-TOF B.05.01	/6500 series (85125.1)	Info.					
Co	mpound Table					Diff	MEC Form	DB FC	ormula
-	Compound Label	RT 013 0.488	Mass 522.1353	Abund 920789	Formula C24 H26 O13	Tgt Mass (ppm) 522.1373 -3.9	1 C24 H26	013 C24 H	26 013
Col	mpound Label d 1: C24 H26 O13	m/z 521.1283	RT 0.4	Algorithm 88 Find By Form	Masa nula 522.	1353	C	28 H26 08 S	tee Si
x	10 5 Cpd 1: C24 H	126 O13: - FBF	Spectrum ().405-0.721 min) M	IN-8_AF_70V_neg2	.d Subtract			
	8								
	6	592.13	20						
	2	([C24H26O	13]-H)-	523.1304	4)- 524.1	316			
				([C24H26015]4	([C24]-126)	524.5 525			
	8	-		([C241120013]-	11)-				
	4						+		
	2			520	525 530 53	5 540 545			
	495 5	500 505	510 Cou	nts vs. Mass-to-C	harge (m/z)				
		List	mula	Ion	\square , (3			
MS	Spectrum Peak		H26013	(M-H)- (\supset			
MS S	Spectrum Peak z Abu 521.1283 1 9	20789.38 C24	120012						
MS S m/z	z Abu 521.1283 1 5 522.132 1 5	20789.38 C24 262111.5 C24 83620.56 C24	H26013 H26013	(M-H)-				
MS S	z Abu 521.1283 1 9 522.132 1 9 523.1304 1 9 524.1316 1 9	101 200789.38 C24 262111.5 C24 83620.56 C24 17268.49 C24	H26013 H26013 H26013	(M-H (M-H	1)- 1)- 1)-				
MS S	z Abu 521.1283 1 5 522.132 1 5 523.1304 1 5 524.1316 1 5 525.1327 1 5	100 320789.38 C24 262111.5 C24 83620.56 C24 17268.49 C24 2659.1 C24	H26013 H26013 H26013 H26013	(M-H (M-H (M-H	1)- 1)- 1)-				
MS : m/z	z Abu 521.1283 1 5 522.132 1 5 523.1304 1 5 525.1327 1 5 d Of Report	2020789.38 C24 262111.5 C24 83620.56 C24 17268.49 C24 2659.1 C24	H26013 H26013 H26013 H26013 H26013	(M-H (M-H (M-H) - }- }-				

Figure S28: HRESIMS spectrum of compound 4

Figure S29: ¹H NMR spectrum of compound **4** (from $\delta_{\rm H}$ 6.40 ppm to 7.12 ppm)

Figure S30: ¹³C NMR spectrum of compound **4** (from $\delta_{\rm C}$ 110 ppm to $\delta_{\rm C}$ 161 ppm)

Figure S31: COSY spectrum of compound **4** (from $\delta_{\rm H} 6.25$ ppm to 7.33 ppm)

Figure S32: NOESY spectrum of compound **4** (from $\delta_{\rm H}$ 6.18 ppm to 7.40 ppm)

Figure S33: HSQC spectrum of compound **4** (from $\delta_{\rm C}$ 107 ppm to $\delta_{\rm C}$ 137 ppm and from $\delta_{\rm H}$ 6.30 ppm to 7.35 ppm)

Figure S34: HMBC spectrum of compound **4** (from δ_C 107 ppm to δ_C 167 ppm and from δ_H 6.05 ppm to 7.45 ppm)

Figure S35: HMBC spectrum of compound **4** (from δ_C 33 ppm to δ_C 43.5 ppm and from δ_H 6.25 ppm to 7.32 ppm)

Figure S36: HMBC spectrum of compound **4** (from δ_C 106 ppm to δ_C 155 ppm and from δ_H 2.24 ppm to 4.81 ppm)

Figure S37: Effects of perrottetin F (1) and biotransformed products (250 µg/disc) on the production of violacein by *C. violaceum* CV026 (A) and prodigiosin by *S. marcescens* (B). The control in the bioassay was DMSO