Supporting Information

J.Chem. Metrol. 15:1 (2021) 25-37

Uncertainty of small enthalpy effects measured by isothermal
calorimetric titration

Astrid Darnell*”, Lauri Sikk?, Ly Porosk? and Ivo Leito!
University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, Estonia

University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia

Table Contents Page

Uncertainty of small enthalpy effects measured by isothermal calorimetric titrationcccceevvevennnn, 2
1. Experimental scheme for isothermal titration CaAlOriMEtry..........cccooviiiiiiiiieice 2
2. Component-by-component approach to measurement uncertainty estimation [1]ccccevvvveviierinne. 2
3. The equations used for computational estimation of heat effects of the calorimetric experiments [2].2
4
5.

Uncertainty estimation for the experimentally determined heat effectscccccevvveviiiicicecccce, 3

Experimental and computational peak areas, their uncertainty estimates and values for the subtracted
heat of dilution effects, EXPEriMENT K2........cci i 4
6. Experimentally determined heat effects, estimates of measurement uncertainty for the heat effects
and the heat of dilution COMTECION VAIUEScoviieiiiiiiiee e 5
7. Description of the custom Python script and the procedure for data fittingccccooviniiincncnenn 6
8. Script USed fOr data FIttiNG........ccccviiriitiriee e 7

S T Lt =Y =) 0 1o1 L FOUT TR PRPPRPURRRR 12

1. Experimental scheme for isothermal titration calorimetry

K* solution
0.1..0.05M

kY

18C6 solution Titation curve

0.005M (25 °C, 20 injections) Curve fitting

2. Component-by-component approach to measurement uncertainty estimation [1]

1. Specification of the measured quantity and choosing a suitable mathematical model best describes the
measured quantity and experimental conditions.

2. ldentifying and quantifying the uncertainty contributions of the input quantities of the mathematical
model.

3. Using the mathematical model and the uncertainty estimates of the input quantities, estimating the
combined standard uncertainty.

4. Presenting the final result together with the uncertainty estimate.

3. The equations used for computational estimation of heat effects of the calorimetric
experiments [2]

Equation (1) is used to calculate the heat effect of binding:

_ nMAHV, Xt 1 Xt 1 \2 4x,|
Q——[1+W+ —\/(1+—+) - ()

2 t nKMt th nKMt th

In equation (1), Here, Q describes the total (cumulative) measurable heat effect of the process in
the solution in the active volume of the calorimetric cell, n is the stoichiometry coefficient of the reaction,
M. is the bulk concentration of the receptor, AH the molar enthalpy effect of the binding reaction, Vy is the
active volume of calorimeter, X; is the bulk concentration of the cation, and K is the equilibrium constant
of the binding reaction.

Equation (2) is used to estimate the heat effect of the i-th experimental injection AQ(i):

AQ() = Q@)+ [H] - oG- 1) ()

2

In equation (2), Q(i) and Q(i-1) are the cumulative heat effects after the titrant injections i and i-1,
respectively, both found from eq (.). The parameter v; is the injection volume of the i-th injection. The
second term of the equation is used to account for the effect of displacing some of the solution from
the active volume into the overflow compartment.

Equation (3) is used to estimate the active concentration of cell compound, M
L
My = My [v—ztv(f]cl] ()
1+—1

Equations (4) and (5) are used to estimate the active concentration of the syringe compound, X

1
Xe = Xto Totll ()
Vtot;
KXo = Csyr [V_o] ()

In equations (3)-(5), , Xw and My are respective bulk concentrations before accounting for the volume
effect. For the determination of Xy, Csyr iS the concentration of titrant solution in the calorimeter’s syringe,
Vit IS the total injection volume after the i-th injection and V, the active volume of the calorimetric cell.

4. Uncertainty estimation for the experimentally determined heat effects

In order to carry out the estimation of measurement uncertainty of the heat effects measured for
individual injections, the following main groups of uncertainty contributions were identified and evaluated:

1) Uncertainty of solution concentrations from making and diluting the solutions (weighing,
volumetry, reagent purity);

2) Uncertainty of titrant volume delivery during the experiments;

3) Uncertainty from instrumental limits of heat effect measurement;

4) Uncertainty of calorimeter cell volume V, and its effect on calculations of the active concentrations
and thus the heat effects of the binding reactions;

5) Uncertainty of accounting for the effects of heat of dilution;

6) Uncertainty of peak area integration.

The computational estimates of experimental heat effects of individual injections and their
uncertainties are presented in Table 1. The component-by-component uncertainty evaluation enables
obtaining uncertainty budgets for every individual injection, which are displayed in Table 2.

5. Experimental and computational peak areas, their uncertainty estimates and values for the
subtracted heat of dilution effects, experiment K2.

Table S1. Example of experiment K2- the experimental and computational values of heat effects and their
uncertainty estimates.

Computational heat effects and uncertainty estimates Experimental heat effect and heat of dilution

Inj. no. AQi (ucal) UAQi (ucal) AQi_exp-AQi,h,o,d,exp (ucal) AQi_h.o,d‘,exp (pcal)
1 -16.61 0.75 -14.25 -0.48
2 -161.25 5.35 -167.31 -5.45
3 -152.00 6.57 -155.07 -4.51
4 -142.52 7.34 -143.62 -3.90
5 -133.54 7.82 -134.11 -3.74
6 -125.05 8.12 -126.36 -3.51
7 -117.04 8.29 -117.32 -3.16
8 -109.47 8.34 -110.25 -3.02
9 -102.33 8.32 -102.83 -2.81
10 -95.60 8.24 -95.96 -2.87
11 -89.25 8.10 -90.12 -2.53
12 -83.27 7.93 -84.38 -2.50
13 -77.63 1.72 -79.06 -2.28
14 -72.32 7.49 -73.71 -2.36
15 -67.31 7.24 -69.59 -2.06
16 -62.60 6.98 -65.17 -1.98
17 -58.16 6.71 -61.30 -1.95
18 -53.97 6.43 -57.87 -1.93
19 -50.03 6.14 -54.03 -1.97
20 -46.32 5.86 -50.94 -1.78

h.o.d.- heat of dilution

6. Experimentally determined heat effects, estimates of measurement uncertainty for the heat
effects and the heat of dilution correction values

Table S2. Uncertainty budgets for injections 1-20 for experiment K2.2

Inj. Vo Ck Ci1sce Viot (1) Vior (1-1)
No

1 0% 39% 21% 39% -

2 0% 38% 23% 38% 0%
3 0% 20% 14% 42% 24%
4 0% 13% 10% 44% 33%
5 1% 9% 8% 45% 38%
6 1% 6% 7% 45% 41%
7 1% 5% 6% 45% 43%
8 1% 4% 5% 45% 44%
9 2% 3% 5% 45% 45%
10 2% 2% 5% 45% 46%
11 2% 2% 4% 45% 46%
12 2% 1% 4% 45% 47%
13 3% 1% 4% 45% 47%
14 3% 1% 4% 45% 47%
15 3% 1% 3% 45% 47%
16 4% 1% 3% 45% 47%
17 4% 0% 3% 45% 48%
18 4% 0% 3% 44% 48%
19 5% 0% 3% 44% 48%
20 5% 0% 3% 43% 48%

Vo- active volume of the calorimetric cell; ck- syringe concentration of ligand; ciscs-cell concentration of
receptor; ; Vio,i- total cumulative injection volume after injection i; Vie,i-1-total cumulative injection
volume after injection i-1;

The three main contributors to the uncertainty of a given experimental heat effect are marked in bold.

aThe uncertainty contributions of vi, volume of injection i; Vix(i-2), total injection volume at injection i-2
were close to 0% for all injections and have been omitted from the table.

7. Description of the custom Python script and the procedure for data fitting

The script works in the following steps:

The script requires the experimental concentrations, experimentally determined peak areas, their
estimated measurement uncertainties and experimental injection volumes as the input data ;
The script also requires an initial estimate of K and AH values;
The script will start with the initial estimate of K and AH value and calculate the computationally
estimated heats for each injection of the titration
The script will estimate the sum of squares of the differences between the experimental and
computational heat effect values
The script will minimize the sum of squares to find AH and logK estimates
The script will estimate the uncertainty by the following steps
o Start with the obtained K and AH values from previous fitting routine
o Calculate the theoretical curve using these parameter values
o Calculate the Jacobian, its weighted form (weighted by the standard deviation of each
experimental data point) and transpose the matrix.
o Calculate the covariance matrix and its inverse
o Calculate the weighted sum of squares and estimate the goodness of fit through the chi-
square: chi?/degrees of freedom
o Estimate the expanded uncertainty of fit for K and AH values by finding the standard
uncertainty from using the covariance matrix and multiplying that by a suitable coverage
factor to estimate approx. 95% confidence interval.
The fitting routine is carried out once more with the experimentally determined peak area
uncertainties estimated with the K and AH values estimated by the initial fit. This is to check that
the estimated parameter values do not cause a notable change in the peak uncertainties and results
of data fitting. When difference of less than 1% is observed between the results obtained from
two consecutive iterations of the script, the result is deemed conclusive.

8. Script used for data fitting

#! /usr/bin/python3
-*- coding: utf-8 -*-

from scipy.optimize import fsolve
from scipy.optimize import minimize
import matplotlib.pyplot as plt
import numpy as np

import sys

import math

reaction
#M+ L -->ML; K1, dH1

HHHH

#initial guess of the K and dH values (K1,dH1)
initial_guess=[135,-26.5]

diff K_delta=0.01

diff_dH_delta=0.01

cellVolume=0.2006*10**(-3) #L; working volume of calorimeter

#number of first injections to remove from fitting
n_remove=1
HUBH T R R

#file name and location for script input data
infile_name="C:/Users/Astrid/OwnCloud/ITC_NMR_2020/ITC/Scripts/exp_data_real.txt"

#experimental parameters: volM; concM; concL

#(active volume; initial cell cocentration; initial syringe concentration)
exp_parameters=[]

exp_parameters.append(0.2006*10**(-3))
exp_parameters.append(0.005029392)
exp_parameters.append(0.050411873)

#print(exp_parameters)

with open(infile_name,"r") as infile:
lines=infile.readlines()

#extract experimental Q list and injection volumes from input data
expQ_list=[]

injections=[]

stdDev=[]

for i in range(1,len(lines)):

expQ_list.append(float(lines[i].rstrip().split()[1]))
injections.append(float(lines[i].rstrip().split()[2]))
stdDev.append(float(lines]i].rstrip().split()[3]))

#calculate total volume injected at each peak

injVol=[]
for i in range(len(injections)):
tempVol=0

for j in range(i+1):
tempVol+=injections]j]
injVol.append(tempVol)

#create new experimental Qlist with n_remove points removed for calculating SS
expQ_pruned_list=expQ _list.copy()
z=0
while z<n_remove:
expQ_pruned_list.pop(0)
z+=1

#function for calculating sum of squares
def calc_SS(list1,list2):
SS=0
if len(listl)!=len(list2):
print("unequal size of list in sum of squares calculation: "+str(len(list1))+"
"+str(len(list2)))
return False
else:
for i in range(len(listl)):
SS+=(list1[i]-list2[i])**2
return SS

#function for calculating sum of squares weighted by 1/stdev of experimental data points
def calc_SS_stddev_weighted(list,list2):
SS=0
if len(list1)!=len(list2):
print("unequal size of list in sum of squares calculation: "+str(len(list1))+"
"+str(len(list2)))
return False
else:
for i in range(len(list1)):
SS+=((list1[i]-list2[i])**2)/stdDev[i]
return SS

#function for calculating analytical solution for equilibrium constant equation

#function for calculating heats
#This function returns results identical to Excel caculations

def calc_heats(K1,dH1,volM,concM,concL):
list_Q_working=[]
for i in range(len(injections)):

#calculate Q at injection i

#calculate LO at injection i (active concentration of titrant)

LO=injVol[i]*concL/(cellVolume)*(1/(1+(injVol[i]/(2*cellVolume))))

#calculate MO at injection i (active concentration of cell compound)

MO=((cellVolume*concM-0.5*concM*injVoll[i])/(cell\Volume+0.5*(injVol[i])))

a=1+(L0/(M0))+(1/(K1*MO0))

Qj=(MO*dH1*cellVolume/2)*(a-(a*a-4*L0/(M0))**0.5)

if i==0:
Qj_1=0

else:
#calculate LO at injection i-1
L1=injVol[i-1]*concL/(cellVolume)*(1/(1+(injVol[i-1])/(2*cellVolume))))
#calculate MO at injection i-1
M1=((cellVolume*concM-0.5*concM*injVol[i-1])/(cell\Volume+0.5*(injVoll[i-

1)

a=1+(L1/(M1))+(1/(K1*M1))
Qj_1=((M1*dH1*cellVolume/2)*(a-(a*a-4*L1/(M1))**0.5))

#calculate dQ
dQ=(Qj-Qj_1+(0.5*(Qj-Qj_1)*(injections[i]/(cellVolume))))
#6 calculate heat effect of injection
list_Q_working.append(dQ)
#convert to ucal
list_Q_working_ucal=[]
foriin list_Q_working:
list_Q_working_ucal.append((i*1*10**9)/4.184)

#print(list_Q_working_ucal)
return list_Q_working_ucal

#function for minimizing Sum of Squares
def minFunction(variables):
global iter_count
input_vars=variables

#calculate theoretical heat effect based on K and dH
vars_with_exp=np.append(input_vars,np.asarray(exp_parameters))
Qlist_ucal=calc_heats(*vars_with_exp)
print(Qlist_ucal)
#remove n_remove first peaks from fitting (not included in SS calculation)
z=0
while z<n_remove:

Qlist_ucal.pop(0)

z+=1

#calculate sum of squares (SS)
SS=calc_SS_stddev_weighted(expQ_pruned_list,Qlist_ucal)

#return calculated SS

print("iteration no: ",iter_count,"multi spectra SS ",SS)
iter_count+=1

return SS

#function for calculating partial derivatives of residuals in respect to K and dH
def calcDerivs(modelParameters,diff_K_delta,diff_dH_delta):

#using 2 point derivation (K+d-(K-d))/2d

print("calculating numerical derivative of residuals with respect to K and dH with delta values of
+-{} and +- {}".format(diff_K_delta,diff dH_delta))

#calculate derivatives in respect to K

KderivUpperVarlist=np.copy(modelParameters)

KderivUpperVarlist[0]+=diff_K_delta

KderivLowerVarlist=np.copy(modelParameters)

KderivLowerVarlist[0]-=diff_K_delta

KderivUpperQlist=calc_heats(*KderivUpperVarlist)

KderivLowerQlist=calc_heats(*KderivLowerVarlist)

KderivList=[]

for i in range(len(KderivUpperQlist)):

KderivList.append((KderivLowerQlist[i]-KderivUpperQlist[i])/(2*diff _K_delta))

#theoretically should include expQ but these cancel out and also change sign so it is lower-upper instead
of upper-lower

#calculate derivatives in respect to dH

dHderivUpperVarlist=np.copy(modelParameters)

dHderivUpperVarlist[1]+=diff dH_delta

dHderivLowerVarlist=np.copy(modelParameters)

dHderivLowerVarlist[1]-=diff dH_delta

dHderivUpperQlist=calc_heats(*dHderivUpperVarlist)

dHderivLowerQlist=calc_heats(*dHderivLowerVarlist)

dHderivList=[]

for i in range(len(dHderivUpperQlist)):

dHderivList.append((dHderivLowerQlist[i]-dHderivUpperQlist[i])/(2*diff_dH_delta))

return KderivList,dHderivList

#function for calculating statistics of fit

def calc_fitting_statistics(last_params):
vars_with_exp=np.append(last_params,np.asarray(exp_parameters))

print(“calculating statistics of fit")

#1 calculate jacobian matrix, its weighted form and transpose -> this is to find the standard error
of parameters K and dH

#calculate theoretical curve using last parameters from fitting routine

Qlist_ucal=calc_heats(*vars_with_exp)
#calculate derivatives
Kderivs,dHderivs=calcDerivs(vars_with_exp,diff_K_delta,diff_dH_delta)
#i=0 --> K
#i=1 -->dH
Jacobian_T=np.array([Kderivs,dHderivs])
Jacobian=np.copy(Jacobian_T)
Jacobian=Jacobian.T
#calculate Jacobian, weighted by stdev of each experimental data point
for i in range(len(stdDev)):

for j in range(len(Jacobianli])):

Jacobian[i][j]=Jacobian[i][j]/stdDeV]j]

#calculate covariance matrix and its inverse
Cov=np.linalg.inv(np.matmul(Jacobian_T,Jacobian))
#calculate standard sum of squares
SS=calc_SS(expQ_list,Qlist_ucal)

#calculate weighted sum of squares
SSw=calc_SS_stddev_weighted(expQ_list,Qlist_ucal)
dof=len(expQ_list)-n_remove-2

print("chi*2/DoF=", SS/dof)
SE_K=math.sgrt(Cov[0][0])
SE_dH=math.sqrt(Cov[1][1])

print("Minimization results:\n")
print("K=",last_params[0], " +- ", SE_K*1.96, " (95%)")
print("dH=",last_params[1], " +- ", SE_dH*1.96, " (95%)")

#function for plotting results

def plot_graphs(last_params):
#calculate theoretical curve using last parameters from fitting routine
vars_with_exp=np.append(last_params,np.asarray(exp_parameters))
Qlist_ucal=calc_heats(*vars_with_exp)
inj=list(range(len(Qlist_ucal)))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(inj,expQ_list,marker="s',label="exp Q")
ax.plot(inj,Qlist_ucal,marker='s',label='simulated Q")
plt.legend(loc="best’)
plt.show()

#minimize sum of squares and print statistics

iter_count=0
result=minimize(minFunction,initial_guess,method="Nelder-Mead',options={'maxiter':10000})
minimization result

print(result)

#calculate statistics for K and dH values and some additional data
calc_fitting_statistics(result.x)

#plot graphs
plot_graphs(result.x)

9. References

[1] S.L.R. Ellison, A. Williams, and Eurachem Working Group on Uncertainty in Chemical

Measurement (1995). Quantifying uncertainty in analytical measurement, Eurachem, London.
[2] (2014). MicrocalTM iTC200 System User Manual MANO0560,.

	Uncertainty of small enthalpy effects measured by isothermal calorimetric titration
	1. Experimental scheme for isothermal titration calorimetry
	2. Component-by-component approach to measurement uncertainty estimation [1]
	3. The equations used for computational estimation of heat effects of the calorimetric experiments [2]
	4. Uncertainty estimation for the experimentally determined heat effects
	5. Experimental and computational peak areas, their uncertainty estimates and values for the subtracted heat of dilution effects, experiment K2.
	6. Experimentally determined heat effects, estimates of measurement uncertainty for the heat effects and the heat of dilution correction values
	7. Description of the custom Python script and the procedure for data fitting
	8. Script used for data fitting
	9. References

