Supporting Information

Rec. Nat. Prod. 16:1 (2022) 66-73

Three New Phenolic Sulfates from Acrostichum aureum

Collected from Coastal Area of Thai Binh Province, Vietnam and

Their Cytotoxic Activity

Tran Thi Minh^{1*,} Nguyen Hoai Thu¹, Ho Khanh Toan¹,

Tran Thuong Quang¹, Nguyen Thi Viet Thanh¹, Tran Thu Huong¹ and

Tran Van Sung²

¹School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi 112456, Vietnam

²Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi 122102, Vietnam

Figure S1: HR-ESI Mass Spectrum of 1 (4-(3'-O-sulfate-4' -hydroxyphenyl)-2-butanone)	2
Figure 51: The Lot Muss spectrum of T (1 (5 ° 5 surface 1 mydroxyphony) 2 sutanone)	3
Figure S2: ¹ H-NMR (500 MHz, DMSO) Spectrum of 1	4
Figure S3: ¹³ C-NMR (125 MHz, DMSO) Spectrum of 1	5
Figure S4: DEPT90 and 135 (125 MHz, DMSO) Spectrum of 1	6
Figure S5: HSQC Spectrum of 1 (4-(3' - <i>O</i> -sulfate-4' -hydroxyphenyl)-2-butanone)	7
Figure S6: ¹ H- ¹ H COSY Spectrum of 1 (4-(3' - <i>O</i> -sulfate-4' -hydroxyphenyl)-2-butanone)	8
Figure S7: HMBC Spectrum of 1 (4-(3' - <i>O</i> -sulfate-4' -hydroxyphenyl)-2-butanone)	9
Figure S8: HMBC Spectrum of 1 (From δ_C 120 ppm to δ_C 210 ppm)	10
Figure S9: HMBC Spectrum of 1 (From δ_C 110 ppm to δ_C 150 ppm)	11
Figure S10: HMBC Spectrum of 1 (From δ_c 25 ppm to δ_c 45 ppm)	12
Figure S11: FT-IR Spectrum of 1 (4-(3' -O-sulfate-4'-hydroxyphenyl)-2-butanone)	13
Figure S12: HR-ESI Mass Spectrum of 2 (4-(3'- <i>O</i> -sulfate-4'-hydroxyphenyl)-2(<i>R</i>)-butanol)	14
Figure S13. ¹ H-NMR (500 MHz, DMSO) Spectrum of 2	15
Figure S14: ¹³ C-NMR (125 MHz, DMSO) Spectrum of 2	16
Figure S15: DEPT90 and 135 (125 MHz, DMSO) Spectrum of 2	17
Figure S16: HSQC Spectrum of 2 (4-(3'- <i>O</i> -sulfate-4'-hydroxyphenyl)-2(<i>R</i>)-butanol)	18
Figure S17: ¹ H- ¹ H COSY Spectrum of 2 (4-(3'- <i>O</i> -sulfate-4'-hydroxyphenyl)-2(<i>R</i>)-butanol)	19
Figure S18: HMBC Spectrum of 2 (4-(3'- <i>O</i> -sulfate-4'-hydroxyphenyl)-2(<i>R</i>)-butanol)	20
Figure S19: HMBC Spectrum of 2 (From δ_C 115 ppm to δ_C 150 ppm)	21
Figure S20: HMBC Spectrum of 2 (From δ_C 20 ppm to δ_C 135 ppm)	22

* Corresponding author: E-Mail: minh.tranthi@hust.edu.vn; Phone:0084-988557877 Fax: 0084-24-38690070

Figure S21: FT-IR Spectrum of 2 (4-(3'- <i>O</i> -sulfate-4'-hydroxyphenyl)-2(<i>R</i>)-butanol)	23
Figure S22: HR-ESI Mass Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)	24
Figure S23: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of 3	25
Figure S24: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of 3 (From $\delta_{\rm C}$ 1.5 ppm to $\delta_{\rm C}$ 4.5 ppm)	25
Figure S25: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of 3	26
Figure S26: DEPT90 and 135 (125 MHz, CD ₃ OD) Spectrum of 3	27
Figure S27: HSQC Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)	28
Figure S28: HSQC Spectrum of 3 (From δ_C 85 ppm to δ_C 120 ppm)	29
Figure S29: HSQC Spectrum of 3 (From δ_C 30 ppm to δ_C 70 ppm)	30
Figure S30: ¹ H- ¹ H COSY Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9- <i>O</i> -sulfate)	31
Figure S31: HMBC Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)	32
Figure S32: HMBC Spectrum of 3 (From δ_C 30 ppm to δ_C 90 ppm)	33
Figure S33: HMBC Spectrum of 3 (From δ_C 30 ppm to δ_C 90 ppm)	34
Figure S34: HMBC Spectrum of 3 (From δ_c 90 ppm to δ_c 150 ppm)	35
Figure S35: NOESY Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)	36
Figure S36: FT-IR Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)	37
Figure S37: CD Spectrum (CH ₃ OH) of 3 (dihydrodehydrodiconiferyl alcohol-9- <i>O</i> -sulfate)	38
Figure S38: ¹ H-NMR (500 MHz, DMSO) Spectrum of (+)-pinoresinol-4-O-sulfate (4)	39
Figure S39: ¹³ C-NMR (125 MHz, DMSO) Spectrum of (+)-pinoresinol-4-O-sulfate (4)	40
Figure S40: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of (+)-pinoresinol-4- <i>O</i> -glucoside (5)	41
Figure S41: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of (+)-pinoresinol-4- <i>O</i> -glucoside (5)	42
Figure S42: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of dihydrodehydrodiconiferyl alcohol-	43
4-O-glucoside (6)	
Figure S43: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of dihydrodehydrodiconiferyl alcohol-	44
4-O-glucoside (6)	
Figure S44: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of (+)-isolarisiresinol-9- <i>O</i> -sulfate (7)	45
Figure S45: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of (+)-isolarisiresinol-9- <i>O</i> -sulfate (7)	46
Figure S46: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of isotachioside (8)	47
Figure S47: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of isotachioside (8)	48
Figure S48: SciFinder Search Results of 1	49
Figure S49: SciFinder Search Results of 2	50
Figure S50: SciFinder Search Results of 3	51
Table S1: ¹³ C NMR (125 MHz) data for compounds 1, 1a and 2 in DMSO	52
Table S2: ¹³ C NMR (125 MHz) data for compounds 3-7	53
Table S3: ¹ H NMR (500 MHz) and ¹³ C NMR (125 MHz) data for compounds 3 and 3a in	54
CD ₃ OD	

_

Figure S1: HR-ESI Mass Spectrum of 1 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2-butanone)

Figure S2: ¹H-NMR (500 MHz, DMSO) Spectrum of 1

Figure S3: ¹³C-NMR (125 MHz, DMSO) Spectrum of 1

DEPT90

Figure S4: DEPT90 and 135 (125 MHz, DMSO) Spectrum of 1

Figure S5: HSQC Spectrum of 1 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2-butanone)

Figure S6: ¹H-¹H COSY Spectrum of 1 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2-butanone)

Figure S7: HMBC Spectrum of HMBC of 1 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2-butanone)

Figure S8: HMBC Spectrum of 1 (From $\delta_{\rm C}$ 120 ppm to $\delta_{\rm C}$ 210 ppm)

Figure S9: HMBC Spectrum of **1** (From δ_C 110 ppm to δ_C 150 ppm)

Figure S10: HMBC Spectrum of **1** (From δ_C 25 ppm to δ_C 45 ppm)

Figure S11: FT-IR Spectrum of 1 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2-butanone)

Figure S12: HR-ESI Mass Spectrum of 2 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2(R)-butanol)

Figure S13: ¹H-NMR (500 MHz, DMSO) Spectrum of 2

Figure S14: ¹³C-NMR (125 MHz, DMSO) Spectrum of 2

Figure S15: DEPT90 and 135 (125 MHz, DMSO) Spectrum of 2

Figure S16: HSQC Spectrum of **2** (4-(3'-*O*-sulfate-4'-hydroxyphenyl)-2(*R*)-butanol)

Figure S17: ¹H-¹H COSY Spectrum of **2** (4-(3'-*O*-sulfate-4'-hydroxyphenyl)-2(*R*)-butanol)

Figure S18: HMBC Spectrum of 2 (4-(3'-O-sulfate-4'-hydroxyphenyl)-2(R)-butanol)

Figure S19: HMBC Spectrum of **2** (From δ_C 115 ppm to δ_C 150 ppm)

Figure S20: HMBC Spectrum of **2** (From δ_C 20 ppm to δ_C 135 ppm)

Figure S21: FT-IR Spectrum of **2** (4-(3'-*O*-sulfate-4'-hydroxyphenyl)-2(*R*)-butanol)

Figure S22: HR-ESI Mass Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)

Figure S24: ¹H-NMR (500 MHz, CD₃OD) Spectrum of **3** (From δ_C 1.5 ppm to δ_C 4.5 ppm)

Figure S26: DEPT90 and 135 (125 MHz, CD₃OD) Spectrum of 3

Figure S27: HSQC Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)

Figure S28: HSQC Spectrum of **3** (From δ_C 85 ppm to δ_C 120 ppm)

Figure S29: HSQC Spectrum of 3 (From δ_C 30 ppm to δ_C 70 ppm)

Figure S30: ¹H-¹H COSY Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-*O*-sulfate)

Figure S31: HMBC Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)

Figure S32: HMBC Spectrum of **3** (From δ_C 30 ppm to δ_C 90 ppm)

Figure S33: HMBC Spectrum of **3** (From δ_C 30 ppm to δ_C 90 ppm)

Figure S34: HMBC Spectrum of **3** (From δ_C 90 ppm to δ_C 150 ppm)

Figure S35: NOESY Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)

Figure S36: FT-IR Spectrum of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)

Figure S37: CD Spectrum (CH₃OH) of 3 (dihydrodehydrodiconiferyl alcohol-9-O-sulfate)

(+)-pinoresinol-4-O-sulfate (4): ¹H NMR (500 MHz, DMSO- d_6) δ_H 8.87 (1H, s, 4-OH), 7.04 (1H, d, J = 8.0 Hz, H-5), 6.92 (1H, d, J = 1.5 Hz, H-2), 6.89 (1H, d, J = 1.5 Hz, H-2'), 6.82 (1H, dd, J = 1.5, 8.0 Hz, H-6), 6.76 (1H, dd, J = 1.5, 8.0 Hz, H-6'), 6.72 (1H, d, J = 8.0 Hz, H-5'), 4.67 (1H, d, J = 4.5 Hz, H-7'), 4.14 (2H, m, H-9a, H-9'a), 3.76 (3H, s, 3'-OCH₃), 3.75 (2H, m, H-9b, H-9'b), 3.74 (3H, s, 3-OCH₃), 3.05 (2H, m, H-8, H-8'). ¹³C NMR (125 Hz, DMSO- d_6) data (Table S2).

Figure S38: ¹H-NMR (500 MHz, DMSO) Spectrum of (+)-pinoresinol-4-O-sulfate (4)

Figure S39: ¹³C-NMR (125 MHz, DMSO) Spectrum of (+)-pinoresinol-4-O-sulfate (4)

(+)-pinoresinol-4-O-glucoside (5): ¹H NMR (500 MHz, CD₃OD) δ_H 7.17 (1H, d, J = 8.0 Hz, H-5), 7.05 (1H, d, J = 2.0 Hz, H-2), 6.97 (1H, d, J = 2.0 Hz, H-2'), 6.95 (1H, dd, J = 2.0, 8.0 Hz, H-6), 6.84 (1H, dd, J = 2.0, 8.0 Hz, H-6'), 6.79 (1H, d, J = 8.0 Hz, H-5'), 4.90 (1H, d, J = 7.0 Hz, H-1''), 4.79 (1H, d, J = 4.5 Hz, H-7'), 4.74 (1H, d, J = 4.5 Hz, H-7), 4.27 (2H, m, H-9a, H-9'a), 3.89 (3H, s, 3-OCH₃), 3.88 (3H, s, 3'-OCH₃), 3.88 (2H, m, H-9b, H-9'b), 3.16 (2H, m, H-8, H-8'), 3.88 (1H, m, H-6''a), 3.71 (1H, m, H-6''b), 3.40-3.55 (4H, m). ¹³C NMR (125 Hz, CD₃OD) data (Table S2).

Figure S40: ¹H-NMR (500 MHz, CD₃OD) Spectrum of (+)-pinoresinol-4-O-glucoside (5)

Figure S41: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of (+)-pinoresinol-4-O-glucoside (5)

Dihydrodehydrodiconiferyl alcohol-4-*O***-glucoside (6):** ¹H NMR (500 MHz, CD₃OD) δ_H 7.17 (1H, *d*, *J* = 8.0 Hz, H-5), 7.05 (1H, *d*, *J* = 2.0 Hz, H-2), 6.96 (1H, *dd*, *J* = 2.0, 8.0 Hz, H-6), 6.75 (1H, *s*, H-2'), 6.73 (1H, *s*, H-6'), 5.58 (1H, *d*, *J* = 6.0 Hz, H-7), 4.85 (1H, *d*, *J* = 7.5 Hz, H-1''), 3.88 (3H, *s*, 3-OCH₃), 3.86 (2H, *m*, H-6"a, H-9a), 3.85 (3H, *s*, 3'-OCH₃), 3.76 (1H, *m*, H-9b), 3.69 (1H, *m*, H-6"b), 3.60 (2H, *t*, *J* = 6.5 Hz, H₂-9'), 3.50 (1H, *m*, H-8), 3.41-3.47 (4H, *m*), 2.64 (2H, *t*, *J* = 7.5 Hz, H₂-7'), 1.83 (2H, *m*, H₂-8'). ¹³C NMR (125 Hz, CD₃OD) data (Table S2).

Figure S42: ¹H-NMR (500 MHz, CD₃OD) Spectrum of dihydrodehydrodiconiferyl alcohol-4-*O*-glucoside (**6**)

Figure S43: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of dihydrodehydrodiconiferyl alcohol-4-*O*-glucoside (**6**)

(+)-isolarisiresinol-9-O-sulfate (7): ¹H NMR (500 MHz, CD₃OD) δ_H 6.78 (1H, *d*, *J* = 1.5 Hz, H-2), 6.75 (1H, *d*, *J* = 8.0 Hz, H-5), 6.68 (1H, *s*, H-2'), 6.62 (1H, *dd*, *J* = 1.5, 8.0 Hz, H-6), 6.22 (1H, *s*, H-5'), 4.13 (1H, *dd*, *J* = 3.0, 10.0 Hz, H-9a), 3.91 (1H, *dd*, *J* = 3.0, 10.0 Hz, H-9b), 3.96 (1H, *d*, *J* = 10.5, H-7), 3.83 (3H, *s*, 3'-OCH₃), 3.82 (3H, *s*, 3-OCH₃), 3.79 (1H, *dd*, *J* = 4.0, 11.0 Hz, H-9'a), 3.73 (1H, *dd*, *J* = 6.0, 11.0 Hz, H-9'b), 2.85 (1H, *m*, H-7'), 2.07 (1H, *m*, H-8'), 1.94 (1H, *tt*, *J* = 3.0, 10.0 Hz, H-8). ¹³C NMR (125 Hz, CD₃OD) data (Table S2).

Figure S44: ¹H-NMR (500 MHz, CD₃OD) Spectrum of (+)-isolarisiresinol-9-O-sulfate (7)

Isotachioside (8): ¹H NMR (500 MHz, CD₃OD) δ_H 7.03 (1H, *d*, *J* = 8.5 Hz, H-6), 6.49 (1H, *d*, *J* = 2.5 Hz, H-3), 6.32 (1H, *dd*, *J* = 2.5, 8.5 Hz, H-5), 4.71 (1H, *d*, *J* = 8.5 Hz, H-1'), 3.88 (1H, *dd*, *J* = 2.5, 12.0 Hz, H-6'a), 3.83 (3H, *s*, 2-OCH₃), 3.71 (1H, *dd*, *J* = 5.5, 12.0 Hz, H-6'b), 3.35-3.45 (4H, *m*, H-2', H-3', H-4', H-5'). ¹³C NMR (125 MHz, CD₃OD) δ_c 154.9 (C-4), 152.0 (C-2), 141.0 (C-1), 120.5 (C-6), 107.6 (C-5), 104.3 (C-1'), 101.8 (C-3), 78.1 (C-3'), 77.8 (C-5'), 75.0 (C-2'), 71.4 (C-4'), 62.5 (C-6'), 56.5 (2-OCH₃).

Figure S46: ¹H-NMR (500 MHz, CD₃OD) Spectrum of isotachioside (8)

Figure S47: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of isotachioside (8)

Structure Editor:

Search Type:

- Exact Structure
- Substructure
- Similarity
- Show precision analysis

🙆 ChemDraw'

Launch a SciFinder/SciFinder" substance or reaction search directly from the latest version of ChemDraw. Learn More

Select All Deselect All

Import CXF

1 of (1 of 6 Similarity Candidates Selected	
0	≥ 99 (most similar)	D
	95-98	0
	90-94	0
2	85-89	2
	80.84	2
	75-79	23
	70-74	127
	63-69	653
	0-64 (least similar)	3509
Ge	t Substances	

Oversical Structure similarity > substances (2) The Create Keep He Rend to SciPlaneer SUBSTANCES 🔒 Cot Get Reactions & Get Commercial Reactions tiet by Destarty tore 🔹 🗣 Analyze Reline 🔲 👻 e of a tubateries telected Analyze by: 🔮 Substance Role ٠ 5009/85 L 119956-62-6 9 State 85 No substances available (Component: 005900-79-4) -: 🖹 -: 🏕 -B Ľ.L C₁₀ H₁₁ O₇ S 1-Batanose, 1-(2.4-shiydrony-5-(sufferry) C₁₀ H₁₀ O₃ S.K 1-Outanone, L²[2,4 clinythony 5-(sufficiency) pheny(), potassium salt (1:1) Key Physical Properties

Figure S48: SciFinder Search Results of 1

- Search Type:
- Exact Structure
- Substructure
- Similarity
- Show precision analysis

🚳 ChemDraw'

Launch a SciFinder/SciFinder* substance or reaction search directly from the latest version of ChemDraw. Learn More

Select All Deselect All

Import CXF

0 of 5	5 Similarity Candidates Selected	Substances
	≥ 99 (most similar)	0
	95-98	0
	90-94	0
	85-89	0
	80-64	16
	75-79	54
	70-74	123
	65-69	691
	0-64 (least strilar)	4115

Get Substances

Chemical Structure similarity > substances (16)

SUBSTANCES Ø	E Get Storectors	centremental 🛠 tools =		1 Consta Keep He Read to SciPlaney
Analyze Refine	Sert by Senterty Score • 🔹	Onaley College		
Analyze by: 😡	💷 🔹 🛛 af 36 Substances Selected			[4] 4 Prope: [1]of 2 • M
Substance Role	Store 64 □ 1. \$44639-92-5 4 → 🖹 → 🏕	Store: 64 U 2. 1291053-88-5 4 (Comparent: 644609-82-5) - D. J D.	Sport: 54 U 3. 2244993-12-7 4 (Component: 844639-82-5) - Ib - 1	Som: 62 U 4 3415-66-7 4 -a 🖄 -a 🄊
Uset 6	X;0~*	×;0~*	×.0~.	100
Properties S Fernadion, Rooperparative 4 Preparation 2	C, H ₁₄ , O, S 1,2-Enceneedol, 4-(2-hydroxysthy);-, 2- (hydrogen solitet) > Key Physical Properties		 C ₆ H _{ell} O ₆ S . K 1.2 Genzandol, 4 (2 hydrocysthyl), 2: (hydrogen suffict), potessium selt (1:1)	C, H _{eff} O, S 1,2-Retained of, 4-(1,2-dihydroxysthyl)-, 1-(hydrogen sulfate) • Key Physical Properties

Figure S49: SciFinder Search Results of 2

UBSTANCES: CHEMICAL STRUCTURE ©		
Structure Editor:	Search Type: Exact Structure Substructure Similarity Show precision analysis	
Click image to change structure or view detail.	ChemDraw' Launch a SoFinder/SolFinder [®] substance or reaction search direct More	tly from the latest version of ChemDraw. Learn
ieliect All Develoct All t of 7 Smlans, Candidates Selected 2 509 (most Smlar) 6 95:548 90:544		Substants
83-89 80-84 75-79 7-74		22 6
63-09 0-64 (least similar) Get Substances		19
JESTANCES @ Bed	e Sectometrical 🛠 Tools *	Grade Keep He Field Software
dyre Refine Dat by Desledy have	• •	Display Syllor
Shine by: ● shote by: ● shote to: Some: 55 ⇒ 1. 200708-37-8 9,	d	
settes 1	r_{i} r_{i	
C ₁₀ H ₂₄ O ₈ S 5-Benzidfuranpropanol, 2,3-db (hydrogen unlifted), (2,53/2)- • Key Physical Properties	ydro-2-(4-hydrosy-3-methacphene)(-3-(hydrosymethy()-7-methacy-, 5-	

Figure S50: SciFinder Search Results of 3

Table S1: ¹³C NMR (125 MHz) data for compounds 1, 1a and 2 in DMSO-d₆

Position	1	1a	2
1	29.1	30.3	23.5
2	207.7	208.4	65.2
3	44.3	45.1	41.0
4	28.1	28.9	30.6
1'	132.1	132.3	133.4
2'	122.8	115.9	122.8
3'	140.5	145.4	140.5
4'	147.2	143.7	146.9
5'	117.0	116.1	116.9
6'	124.5	119.1	124.5

1a: 4-(3',4'-dihydroxyphenyl)-2-butanone [T. T. Le, J. Yin, M. W. Lee (2017). Anti-inflammatory and anti-Oxidative activities of phenolic compounds from *Alnus sibirica* stems fermented by *Lactobacillus plantarum* subsp. *argentoratensis*, *Molecules* **22**, 1566-1574.]

Table S2: ¹³C NMR (125 MHz) data for compounds 3-7

Position	3 ^a	6 ^a	4 ^b	5 ^a	7 ^a
1	134.4	138.5	136.5	137.5	138.4
2	110.6	111.2	110.5	117.5	114.4
3	149.0	151.0	150.4	151.1	148.8
4	147.3	147.6	141.9	147.5	145.2
5	116.1	118.1	120.7	118.1	116.1
6	119.4	119.4	117.5	119.8	123.1
7	88.8	88.4	84.9	87.5	47.8
8	52.8	55.6	53.7	55.5	45.2
9	70.0	65.1	71.0	72.7	67.6
1′	137.1	137.1	132.1	133.7	129.2
2'	114.4	114.2	110.4	111.0	112.4
3'	145.2	145.2	147.5	148.0	147.2
4'	147.6	147.5	145.8	147.5	145.9
5'	128.8	129.6	115.1	116.1	117.4
6′	118.1	117.9	118.6	120.0	133.8
7′	32.8	32.9	85.2	87.1	33.5
8'	35.7	35.8	53.5	55.3	39.2
9′	62.2	62.2	70.9	72.6	64.9
OCH ₃	56.8	56.8	55.6	56.7	56.4
OCH ₃	56.4	56.7	55.5	56.4	56.4
1″		102.8		102.9	
2''		74.9		74.9	
3″		78.2		78.2	
4''		71.3		71.3	
5″		77.8		77.8	
6''		62.5		62.5	

^a Recorded in CD₃OD, ^b in DMSO-*d*₆

Table S3. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) data for compounds 3 and 3a in CD₃OD

D	3		<u>- 3a</u>		
Position	δ_{C}	δ_{H} (J in Hz)	δ_{C}	δ_{H} (<i>J</i> in Hz)	
1	134.4 (C)	-	135.0	-	
2	110.6 (CH)	7.03 (1H, $d, J = 2.0$)	110.7	6.95 (1H, <i>d</i> , <i>J</i> = 2.0)	
3	149.0 (C)	-	149.2	-	
4	147.3 (C)	-	147.8	-	
5	116.1 (CH)	6.77 (1H, <i>d</i> , <i>J</i> = 8.0)	116.2	6.77 (1H, $d, J = 8.0$)	
6	119.4 (CH)	6.89 (1H, <i>dd</i> , <i>J</i> = 2.0, 8.0)	119.8	6.83 (1H, dd, <i>J</i> = 2.0, 8.0)	
7	88.8 (CH)	5.60 (1H, d, J = 6.0)	89.1	5.50 (1H, d, J = 6.0)	
8	52.8 (CH)	3.70 (1H, <i>m</i>)	55.5	3.84 (1H, m)	
9	70.0 (CH ₂)	4.30 (1H, <i>dd</i> , <i>J</i> = 6.0, 10.5)	65.0	3.47 (1H, <i>dd</i> , <i>J</i> = 6.0, 11.0)	
		4.19 (1H, <i>dd</i> , <i>J</i> = 8.0, 10.5)		3.76 (1H, <i>dd</i> , <i>J</i> = 7.0, 11.0)	
1′	137.1 (C)	-	136.5	-	
2'	114.4 (CH)	6.75 (1H, <i>s</i>)	114.9	6.68 (1H, <i>s</i>)	
3'	145.2 (C)	-	145.3	-	
4'	147.6 (C)	-	147.5	-	
5'	128.8 (C)	-	129.9	-	
6′	118.1 (CH)	6.79 (1H, <i>s</i>)	118.2	6.68 (1H, <i>s</i>)	
7′	32.8 (CH ₂)	2.64 (2H, t, J = 7.5)	32.7	2.68 (2H, t, J = 7.0)	
8'	35.7 (CH ₂)	1.84 (2H, <i>m</i>)	32.8	1.94 (2H, m)	
9′	62.2 (CH ₂)	3.58 (2H, <i>t</i> , <i>J</i> = 6.5)	68.2	4.01 (2H, <i>t</i> , <i>J</i> = 6.0)	
3-OCH ₃	56.4 (CH ₃)	3.85 (3H, <i>s</i>)	56.5	3.83 (3H, <i>s</i>)	
3'-OCH ₃	56.8 (CH ₃)	3.88 (3H, <i>s</i>)	36.9	3.87 (3H, <i>s</i>)	

3a: Dihydrodehydrodiconiferyl alcohol 9'-*O*-sulfate [H. Otsuka, E. Hirata, T. Shinato, Y. Takeda (2000). Isolation of lignan glucosides and neolignan sulfate from the leaves of *Glochidion zeylanicum* (Gaertn) A. Juss, *Chem. Pharm. Bull.* **48**, 1084-1086].