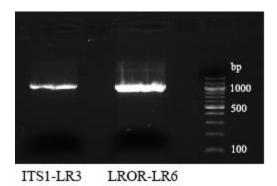
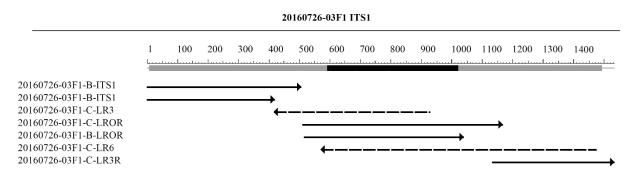
Supporting Information

Rec. Nat. Prod. 16:1 (2022) 104-109

Cytotoxic Activities of Aspergillin PZ and Trichoderone B from an Isolate of *Aspergillus flavipes* sp. Against NCI-60 Human Tumor Cell Lines

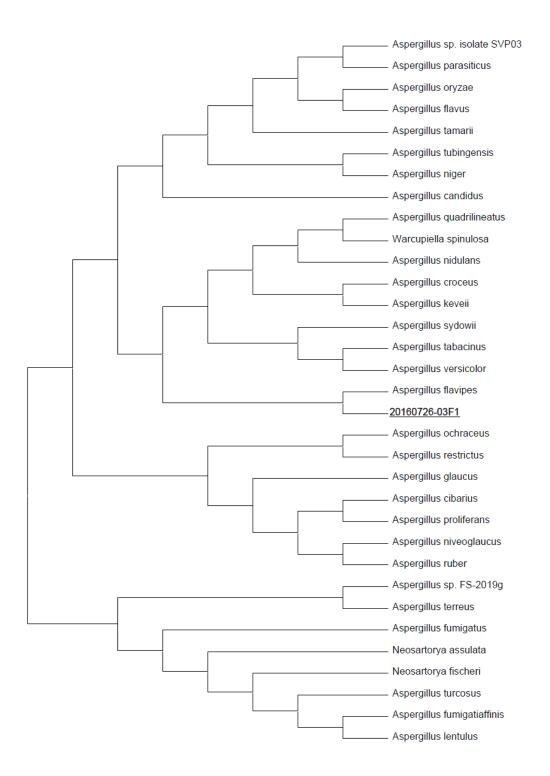

Grant C. Currens^{1,2}, Umesh T. Sankpal^{2,3}, Riyaz Basha^{2,3} and Eric Y. Cheng^{1*}

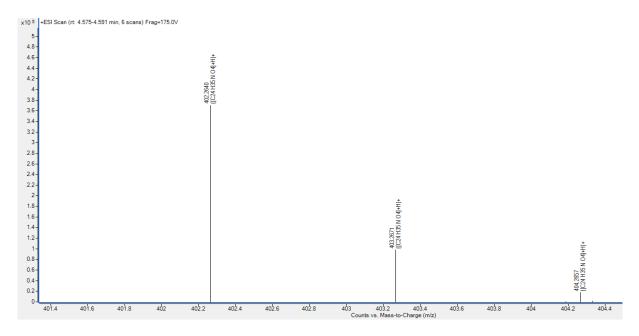
¹ College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.


² Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.

³ Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.

Table of Contents	Page
Figure S1: EtBr-stained gel electrophoresis of DNA amplicons	2
Figure S2: Contig map of the ITS1-28S rDNA region for DNA fingerprinting	2
Figure S3: NCBI BLASTn comparison of unknown sp. to A. flavipes NRRL 302	3
Figure S4: Inferred evolutionary history tree for the ITS-28S rDNA region of fungal isolate (lab record no. 20160726-03F1)	4
Figure S5: TOF-ESI-MS of purified secondary metabolite aspergillin PZ (1)	5
Figure S6: TOF-ESI-MS of purified secondary metabolite trichoderone B (2)	6
Figure S7: ¹ H-NMR (300 MHz, MeOD) Spectra of 1 and 2 (aspergillin PZ and trichoderone B)	7
Figure S8: Predicted products generated by MS(n) fragmentation	8
Figure S9: Percentages of cell growth of 60 cell lines following exposure to 1 and 2	9
Figure S10: Graph of percentages of cell growth of 60 cell lines following exposure to 1 and 2	10
References	10


Figure S1: EtBr-stained gel electrophoresis image of two DNA amplicons generated by touchdown PCR with primer pairs ITS1-LR3 and LROR-LR6, respectively.


Figure S2: Contig map of the ITS1-28S rDNA region assembled from PCR sequencing reads. Primers used in sequencing reads are ITS1, LR3, LROR, LR6, and LR3R, respectively.

Score 2058 b	oits(111	Expect 4) 0.0	Identities 1118/1120(99%)	Gaps 0/1120(0%)	Strand Plus/Plu	JS
Query	1			TAAGCACTTTATACCGTGAA		60
Sbjct	14					73
Query	61			AGTACCTTACTACATGGATA		120
Sbjct	74			AGTACCTTACTACATGGATA		133
Query	121			ACTTCGGAAGGGGTGTATTT		180
Sbjct	134			ACTTCGGAAGGGGTGTATTT		193
Query	181			TTCATAATAACTTAACGAAT(240
Sbjct	194			ttcataataacttaacgaato		253
Query	241			CCCTATCAACTTTCGATGGT/		300
Sbjct	254			ĊĊĊŦĂŦĊĂĂĊŦŦŦĊĠĂŦĠĠŦ		313
Query	301			TTAGGGTTCGATTCCGGAGAG		360
Sbjct	314			TTAGGGTTCGATTCCGGAGAG		373
Query	361			AGGCGCGCAAATTACCCAAT		420
Sbjct	374			AGGCGCGCAAATTACCCAAT		433
Query	421			GCTCTTTTGGGTCTCGTAAT		480
Sbjct Query	434 481			GGAGGGCAAGTCTGGTGCCA		493 540
Sbjct	494			GGAGGGCAAGTCTGGTGCCA		553
Query	541			TTGTTGCAGTTAAAAAGCTC		600
Sbjct	554			TTGTTGCAGTTAAAAAGCTC		613
Query	601			GCGAGTACTGGTCCGGCTGG		660
Sbjct	614			GCGAGTACTGGTCCGGCTGG		673
Query	661			GGGGGGAACCAGGACTTTTA		720
Sbjct	674					733
Query	721			AATACATTAGCATGGAATAA		780
Sbjct	734			AATACATTAGCATGGAATAA		793
Query	781			CCGCCGTAATGATTAATAGG		840
Sbjct	794			CCGCCGTAATGATTAATAGG		853
Query	841			TTCTTGGATTTGCTGAAGAC		900
Sbjct	854			TTCTTGGATTTGCTGAAGAC		913
Query	901			TCAGGGAACGAAAGTTAGGG		960
Sbjct	914			tcagggaacgaaagttaggg		973
Query	961			ACTATGCCGACTAGGGATCG		1020
Sbjct	974	GACGATCAGATACCGT	CGTAGTCTTAACCATAA	ACTATOCCGACTAGGGATCG	GGCGGTG	1033
Query	1021			AATCAAAGTTTTTGGGTTCT		1080
Sbjct	1034			AATCAAAGTTTTTGGGTTCT	GGGGGGA	1093
Query	1081		GAAACTTAAAGGAATTG	111111		
Sbjct	1094	GTATGGTCGCAAGGCT	GAAACTTAAAGAAATTG	ACGGAAG 1133		

Figure S3: NCBI-BLASTn [1] comparison showed a 99.82% sequence identity of the ITS1-28S rDNA region of a fungal isolate (lab record: 20160726-03F1) to that of *A. flavipes* NRRL 302.

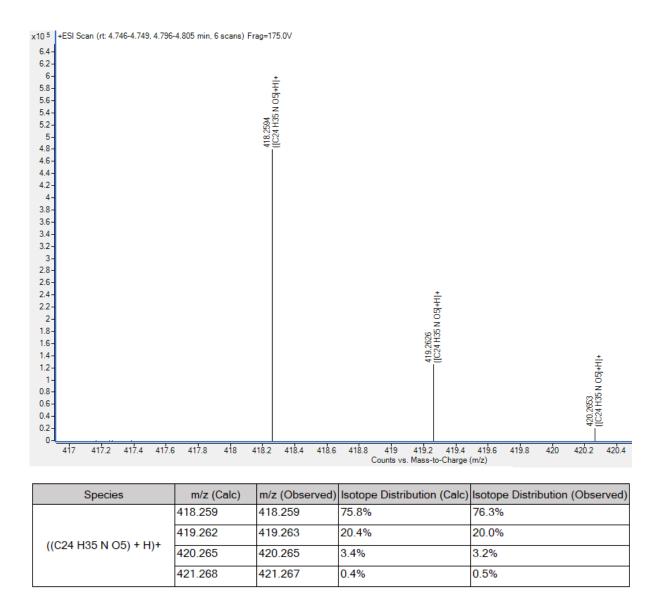
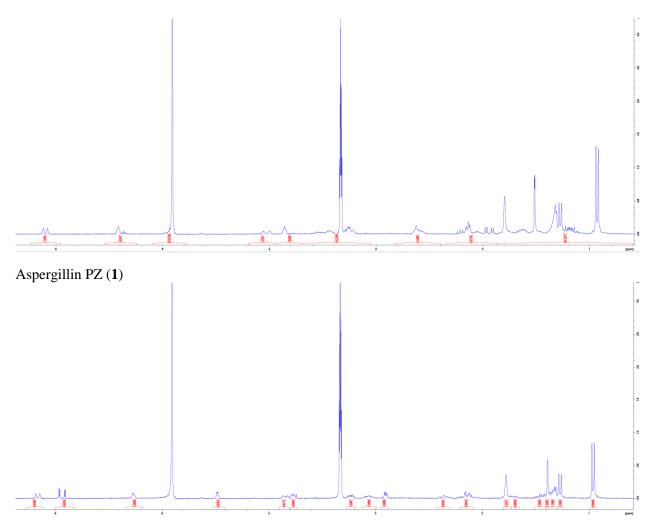


Figure S4: Inferred evolutionary history tree for the ITS-28S rDNA region of a fungal isolate (lab record no. 20160726-03F1) from the Concho County in central Texas, USA, which produced aspergillin PZ (1) and trichoderone B (2) (MEGA X) [2-4].



Species	m/z (Calc)	m/z (Observed)	Isotope Distribution (Calc)	Isotope Distribution (Observed)
((C24 H35 N O4) + H)+	402.264	402.264	76.2%	76.1%
	403.267	403.267	20.5%	20.2%
	404.27	404.266	3.3%	3.6%

Figure S5: TOF-ESI-MS and HRMS comparison table of calculated to observed isotope abundances and masses of a purified secondary metabolite from *Aspergillus flavipes* sp. collected from the Concho County in central Texas, USA, determined to be aspergillin PZ (**1**) [observed m/z 402.2640 (M + H)⁺; calculated m/z 402.264 for (C₂₄H₃₅NO₄ + H)⁺].

Figure S6: TOF-ESI-MS and HRMS comparison table of calculated to observed isotope abundances and masses of a purified secondary metabolite from *Aspergillus flavipes* sp. collected from the Concho County in central Texas, USA determined to be trichoderone B (**2**) [observed m/z 418.2594 (M + H)⁺; calculated m/z 418.259 for (C₂₄H₃₅NO₅ + H)⁺].

Trichoderone B (2)

Aspergillin PZ (1): White amorphous powder. ¹H NMR (MeOD, 300 MHz) δ 6.10 (d, J = 10.76 Hz, 1H), 5.41 (m, 1H), 5.36 (t, J = 4.70 Hz, 1H), 4.02 (d, J = 18.09 Hz, 1H), 3.86 (m, 1H), 3.30 – 3.18 (m, 1H), 2.67 – 2.53 (m, 2H), 2.24 - 2.18 (m, 1H), 2.18 – 2.10 (m, 1H), 1.94 (dd, J = 17.73, 5.49 Hz, 1H), 1.79 (s, 4H), 1.63 (m, 2H), 1.51 (d, J = 1.32, 3H), 1.32 (m, 4H), 1.27 (d, J = 6.92 Hz, 3H), 1.19 (m, 2H), 0.93 (d, J = 6.57 Hz, 6H).

Trichoderone B (2): White amorphous powder. ¹H NMR (MeOD, 300 MHz) δ 7.27 (dd, J = 15.30, 2.40 Hz, 1H), 6.16 (m, 1H), 5.96 (d, J = 2.39 Hz, 1H), 5.91 (d, J = 2.39 Hz, 1H), 5.27 (m, 1H), 4.28 (m, 1H), 3.85 (m, 1H), 3.80 – 3.75 (m, 1H), 3.23 (m, 1H), 3.06 (m, 1H), 2.93 – 2.88 (m, 1H), 2.36 (m, 1H), 2.23 – 2.08 (m, 2H), 1.78 (m, 4H), 1.50 – 1.42 (m, 2H), 1.39 (s, 3H), 1.37-1.31 (m, 3H), 1.27 (d, J = 7.28 Hz, 3H), 0.96 (d, J = 6.57 Hz, 6H).

Figure S7: ¹H-NMR spectra for 1 and 2 obtained in MeOD at 300MHz.

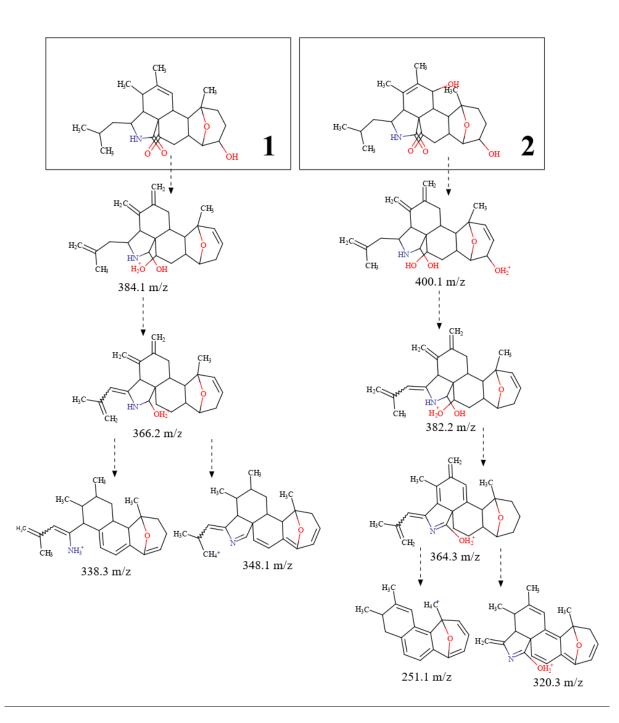
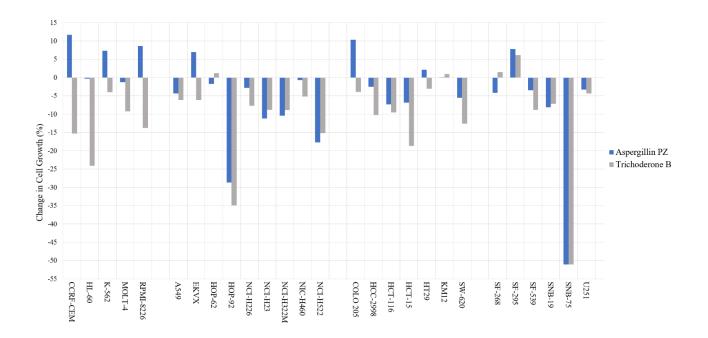



Figure S8: Predicted products generated by MS(n) fragmentation comparison of aspergillin PZ (1) and trichoderone B (2) with CFM-ID [5].

			В	reast		
	MCF7	MDA-MB-231	HS 578T	BT-549	T-47D	MDA-MB-468
Compound 1	94.27	103.65	88.52	84.83	98	90.75
Compound 2	76.79	99.3	84.85	77.17	75.49	72.84
Δ	17.48	4.35	3.67	7.66	22.51	17.91
			(CNS		
	SF-268	SF-295	SF-539	SNB-19	SNB-75	U251
Compound 1	95.85	107.8	96.51	91.89	48.94	96.72
Compound 2	101.48	106.12	91.19	92.81	48.98	95.67
Δ	-5.63	1.68	5.32	-0.92	-0.04	1.05
	Colon					
	COLO 205	HCC-2998	HCT-116	HCT-15	HT29	KM12
Compound 1	110.33	97.48	92.72	93.19	102.12	100.09
Compound 2	96.11	89.75	90.46	81.3	96.93	100.93
Δ	14.22	7.73	2.26	11.89	5.19	-0.84
	Colon			Leukemia		
	SW-620	CCRF-CEM	HL-60(TB)	K-562	MOLT-4	RPMI-8226
Compound 1	94.47	111.65	99.69	107.34	98.77	108.59
Compound 2	87.37	84.7	75.89	95.96	90.81	86.22
Δ	7.1	26.95	23.8	11.38	7.96	22.37
Non-Small Cell Lung Cancer				•		
	HOP-92	NCI-H226	NCI-H23	NCI-H322M	NCI-H460	NCI-H522
Compound 1	71.33	97.15	88.82	89.63	99.3	82.32
Compound 2	65.11	92.26	91.16	91.08	94.79	84.8
Δ	6.22	4.89	-2.34	-1.45	4.51	-2.48
	Non-Small Cell Lung Cancer		ancer	Melanoma		
	A549/ATCC		HOP-62	SK-MEL-5	UACC-257	UACC-62
Compound 1	95.67	106.91	98.26	99.1	80.92	96.42
Compound 2	93.84	93.86	101.19	96.01	73.26	89.75
Δ	1.83	13.05	-2.93	3.09	7.66	6.67
			Mel	anoma		
	LOX IMVI	MALME-3M	M14	MDA-MB-435	SK-MEL-2	SK-MEL-28
Compound 1	95.15	94.06	91.12	98.39	94.25	91.68
Compound 2	96.83	92.44	88.4	97.65	94.22	93.45
. Δ	-1.68	1.62	2.72	0.74	0.03	-1.77
Renal						
	786-0	A498	ACHN	CAKI-1	RXF 393	SN12C
Compound 1	99.54	58.49	100.46	89.53	90.87	95.43
Compound 2	96.06	62.06	82.08	85.52	77.84	91.28
. Δ	3.48	-3.57	18.38	4.01	13.03	4.15
	Renal			Ovarian		
	TK-10	UO-31	IGROV1	OVCAR-3	OVCAR-4	OVCAR-5
Compound 1	95.27	76.32	101.3	96.91	93.67	93.58
Compound 2	85.45	77.19	87.76	91.69	85.4	95.35
. Δ		-0.87	13.54	5.22	8.27	-1.77
	Ovarian Prostate					
		SK-OV-3	PC-3	DU-145	Mean	
Compound 1	90.29	98.66	102.01	94.13	103.31	94.31
Compound 2	87.1	97.7	105.28	80.88	93.96	88.33
Δ	3.19	0.96	-3.27	13.25	9.35	5.98
-						

NCI-60 µM Single Dose Screening (% Cell Growth) Breast

Figure S9: Percentages of cell growth of 60 cell lines following exposure to a single dosing (10 μ M) of aspergillin PZ (1) or trichoderone B (2). Δ indicates the difference in cell growth percentage between the two tested compounds.

Figure S10: Graph of growth percentages from NCI60 human cell lines screening following single dosing $(10 \,\mu\text{M})$ of aspergillin PZ (1) or trichoderone B (2).

References

- [1] Z. Zhang, S. Schwartz, L. Wagner and W. Miller (2000). A greedy algorithm for aligning DNA sequences, *J. Comput. Biol.* **7** (1-2), 203-214
- [2] S. Kumar, G. Stecher, M. Li, C. Knyaz and K. Tamura (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms, *Mol. Biol. Evol.* 35 (6), 1547-1549
- [3] K. Tamura and M. Nei (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, *Mol. Biol. Evol.* **10** (**3**), 512-526
- [4] J. Felsenstein (1985). Confidence limits on phylogenies: An approach using the bootstrap, Evolution 39 (4), 783-791
- [5] F. Allen, R. Greiner and D. Wishart (2015). Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification, *Metabolomics* **11** (**1**), 98-110.