Supporting Information

Rec. Nat. Prod. 16:2 (2022) 172-181

Chemical Composition, Antioxidant and Enzyme Inhibitory Activity of *Onopordum caricum*

Arzuhan Sihoglu Tepe

Kilis 7 Aralik University, Vocational School of Health Sciences, Department of Pharmacy Services, 79000, Kilis-Türkiye

Table of Contents	Page
S1. Chemicals	2
S2. Preparation of the extracts	2
S3. Phytochemical analysis	2
Table S1: ESI–MS/MS Parameters and analytical characteristics for the analysis of target	
analytes by MRM negative and positive ionization mode	3
Table S2: Calibration curves and sensitivity properties of the method	4
S4. Biological activity	5
S5. Statistical analysis	6
Figure S1: Chromatograms of the extracts (A-Methanol, B-Ethyl acetate, C-Water)	7
Figure S2: LC–ESI–MS/MS MRM chromatograms of phenolic compounds.	8
Table S3: Percentage measurement uncertainty (%) values for total flavonoid and phenolic	8
contents O. caricum extracts.	
Table S4: Percentage measurement uncertainty (%) values for concentration (μg/g extract)	9
of selected phenolic compounds in <i>O. caricum</i> extracts.	
Table S5: Percentage measurement uncertainty (%) values for antioxidant activity of <i>O</i> .	10
caricum extracts.	
Table S6: Enzyme inhibition activity of <i>O. caricum</i> extracts.	10

S1. Chemicals

Gallic acid (97.5%), (+)-catechin (\geq 98%), pyrocatechol (\geq 99%), chlorogenic acid (\geq 95%), 2,5-dihydroxybenzoic acid (\geq 98%), 4-hydroxybenzoic acid (\geq 99%), (-)-epicatechin (\geq 98%), caffeic acid (\geq 98%), syringic acid (\geq 95%), vanillin (\geq 97%), taxifolin (\geq 90%), sinapic acid (\geq 98%), *p*-coumaric acid (\geq 98%), ferulic acid (99%), rosmarinic acid (\geq 98%), 2-hydroxycinnamic acid (97%), pinoresinol (\geq 95%), quercetin (\geq 95%), luteolin (\geq 98%), and apigenin (\geq 95%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Vanillic acid (\geq 97%), 3-hydroxybenzoic acid (99%), 3,4-dihydroxyphenylacetic acid (98%), apigenin 7-glucoside (\geq 97%), luteolin 7-glucoside (\geq 98%), hesperidin (\geq 80%), eriodictyol (\geq 95%), and kaempferol (\geq 97%) were obtained from Fluka (St. Louis, MO, USA). Finally, verbascoside (\geq 99%), protocatechuic acid (97%), and hyperoside (\geq 97%) were purchased from HWI Analytik (Ruelzheim, Germany). Methanol and formic acid of HPLC grade were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Merck (Darmstadt, Germany), respectively. Ultra-pure water (18 m Ω) was obtained from a Milli-Q water purification system (Millipore Co., Ltd.) Ethyl acetate and methanol were obtained from Carlo Erba Reagents (Milan, Italy). Ultra-pure water was obtained using a Millipore Milli-Q Plus water treatment system (Millipore Bedford Corp., Bedford, MA).

S2. Preparation of the Extracts

The aerial parts of *O. caricum*, which have been dried in a cool and out of direct sunlight environment, were separately extracted with 100 mL of EtOAc and MeOH for one hour in a sonication bath at 30°C. The extracts were then filtered and evaporated under reduced vacuum pressure to remove solvents. A different route was followed to obtain the water extract. A 2 g sample obtained from the aerial parts of *O. caricum* was boiled in 50 mL distilled water for 20 minutes. The water extract was then filtered and lyophilized at -80°C for 48 hours. The extracts were stored in a humidity-free environment at +4°C until the tests are done [1].

S3. Phytochemical Analysis

An Agilent Technologies 1260 Infinity liquid chromatography system hyphenated to a 6420 Triple Quad mass spectrometer was used for quantitative analyses (Table S1). Chromatographic separation was carried out on a Poroshell 120 EC-C18 (100 mm \times 4.6 mm I.D., 2.7 μ m) column. Three mobile phases were tested to obtain a complete resolution of all isomers and the highest sensitivity for all target compounds, namely: (i) 0.1% formic acid/methanol, (ii) 5 mM ammonium acetate/acetonitrile with 0.1% acetic acid and (iii) 10 mM ammonium formate with 0.1% formic acid/acetonitrile with 0.1% formic acid, respectively. The first mobile phase configuration (0.1% formic acid/methanol) was selected on the base of the better chromatographic resolution of isomeric compounds. On the other hand, the selected mobile phase configuration also provided higher sensitivity for many of the phenolic compounds. As a result, the mobile phase was made up from solvent A (0.1%, v/v formic acid solution) and solvent B (methanol). The gradient profile was set as follows: 0.00 min 2% B eluent, 3.00 min 2% B eluent, 10.00 min 50% B eluent, 14.00 min 95% B eluent, 17.00 min 95% B and 17.50 min 2% B eluent. The column temperature was maintained at 25°C. The flow rate was 0.4 mL /min and the injection volume was 2.0 μ L.

The tandem mass spectrometer was interfaced to the LC system via an ESI source. The electrospray source of the MS was operated in negative and positive multiple reaction monitoring (MRM) mode and the interface conditions were as follows: capillary voltage of -3.5 kV, gas temperature of 300°C and gas flow of 11 L/min. The nebulizer pressure was 40 psi.

Table S1: ESI–MS/MS Parameters and analytical characteristics for the analysis of target analytes by MRM negative and positive ionization mode

Target compounds	Rt (min)	Precursor ion	MRM1 (CE, V)	MRM2 (CE, V)
Compounds analyzed by NI mode				
Gallic acid	8.891	168.9 [M – H]–	125.0 (10)	_
Protocatechuic acid	10.818	152.9 [M – H]–	108.9 (12)	_
3,4-Dihydroxyphenylacetic acid	11.224	167.0 [M – H]–	123.0(2)	_
(+)-Catechin	11.369	289.0 [M – H]–	245.0 (6)	202.9 (12)
Pyrocatechol	11.506	109.0 [M – H]–	90.6 (18)	52.9 (16)
2,5-Dihydroxybenzoic acid	12.412	152.9 [M – H]–	109.0 (10)	_
4-Hydroxybenzoic acid	12.439	136.9 [M – H]–	93.1 (14)	_
Caffeic acid	12.841	179.0 [M – H]–	135.0 (12)	_
Vanillic acid	12.843	166.9 [M – H]–	151.8 (10)	122.6 (6)
Syringic acid	12.963	196.9 [M – H]–	181.9 (8)	152.8 (6)
3-Hydroxybenzoic acid	13.259	137.0 [M – H]–	93.0 (6)	_
Vanillin	13.397	151.0 [M – H]–	136.0 (10)	_
Verbascoside	13.589	623.0 [M - H]-	461.0 (26)	160.8 (36)
Taxifolin	13.909	303.0 [M – H]–	285.1 (2)	125.0 (14)
Sinapic acid	13.992	222.9 [M – H]–	207.9 (6)	163.8 (6)
p-Coumaric acid	14.022	162.9 [M – H]–	119.0 (12)	_
Ferulic acid	14.120	193.0 [M – H]–	177.8 (8)	134.0 (12)
Luteolin 7-glucoside	14.266	447.1 [M – H]–	285.0 (24)	_
Rosmarinic acid	14.600	359.0 [M - H]-	196.9 (10)	160.9 (10)
2-Hydroxycinnamic acid	15.031	162.9 [M – H]–	119.1 (10)	_
Pinoresinol	15.118	357.0 [M - H]-	151.0 (12)	135.7 (34)
Eriodictyol	15.247	287.0 [M - H]-	151.0 (4)	134.9 (22)
Quercetin	15.668	301.0 [M - H]-	178.6 (10)	151.0 (16)
Kaempferol	16.236	285.0 [M – H]–	242.8 (16)	229.1 (18)
Compounds analyzed by PI mode				
Chlorogenic acid	11.802	355.0 [M + H] +	163.0 (10)	_
(-)-Epicatechin	12.458	291.0 [M + H] +	139.1 (12)	122.9 (36)
Hesperidin	14.412	611.1 [M + H]+	449.2 (4)	303.0 (20)
Hyperoside	14.506	465.1 [M + H] +	303.1 (8)	_
Apigenin 7-glucoside	14.781	433.1 [M + H] +	271.0 (18)	_
Luteolin	15.923	287.0 [M + H] +	153.1 (34)	135.1 (36)
Apigenin	16.382	271.0 [M + H] +	153.0 (34)	119.1 (36)

 $R_{\rm t}$, retention time; NI, negative ion; and PI, positive ion.

Table S2: Calibration curves and sensitivity properties of the method

Linearity and sensitivity characteristics							
Compounds	Range	Linear	\mathbb{R}^2	LOD	LOQ		
	(µg/L)	equation		$(\mu g/L)$	(µg/L)		
Gallic acid	5-500	y = 4.82x - 26.48	0.9988	1.46	4.88		
Protocatechuic acid	2.5 - 500	y = 5.65x - 9.99	0.9990	1.17	3.88		
3,4-Dihydroxyphenylacetic acid	5-500	y = 5.13x - 12.39	0.9990	1.35	4.51		
(+)-Catechin	10-500	y = 1.45x + 1.95	0.9974	3.96	13.20		
Pyrocatechol	25-400	y = 0.11x - 0.52	0.9916	9.62	32.08		
Chlorogenic acid	1-500	y = 12.14x + 32.34	0.9995	0.55	1.82		
2,5-Dihydroxybenzoic acid	5-500	y = 3.79x - 14.12	0.9980	2.12	7.08		
4-Hydroxybenzoic acid	5-500	y = 7.62x + 22.79	0.9996	1.72	5.72		
(-)-Epicatechin	5-500	y = 9.11x - 9.99	0.9971	1.85	6.18		
Caffeic acid	5-500	y = 11.09x + 16.73	0.9997	3.15	10.50		
Vanillic acid	10-500	y = 0.49x - 1.61	0.9968	2.56	8.54		
Syringic acid	10-500	y = 0.74x - 1.54	0.9975	3.75	12.50		
3-Hydroxybenzoic acid	5-500	y = 3.69x - 12.29	0.9991	1.86	6.20		
Vanillin	50-500	y = 2.02x + 135.49	0.9926	15.23	50.77		
Verbascoside	2.5-500	y = 8.59x - 28.05	0.9988	0.82	2.75		
Taxifolin	5-500	y = 12.32x + 9.98	0.9993	1.82	6.05		
Sinapic acid	5-500	y = 2.09x - 6.79	0.9974	2.64	8.78		
p-Coumaric acid	5-500	y = 17.51x + 53.73	0.9997	1.93	6.44		
Ferulic acid	5-500	y = 3.32x - 4.30	0.9992	1.43	4.76		
Luteolin 7-glucoside	1 - 500	y = 45.25x + 156.48	0.9996	0.45	1.51		
Hesperidin	5-500	y = 5.98x + 0.42	0.9993	1.73	5.77		
Hyperoside	2.5 - 500	y = 16.32x - 1.26	0.9998	0.99	3.31		
Rosmarinic acid	1-500	y = 9.82x - 17.98	0.9989	0.57	1.89		
Apigenin 7-glucoside	1-500	y = 21.33x - 31.69	0.9983	0.41	1.35		
2-Hydroxycinnamic acid	1-500	y = 16.72x - 26.94	0.9996	0.61	2.03		
Pinoresinol	10-500	y = 0.80x - 2.69	0.9966	3.94	13.12		
Eriodictyol	2.5-500	y = 14.24x - 0.50	0.9998	0.80	2.68		
Quercetin	5-500	y = 14.68x - 18.25	0.9997	1.23	4.10		
Luteolin	5-500	y = 8.96x + 26.80	0.9992	1.34	4.46		
Kaempferol	10-500	y = 0.82x - 3.06	0.9959	3.30	10.99		
Apigenin	2.5–500	y = 11.29x + 38.05	0.9987	0.96	3.20		

LOD and LOQ: limit of detection and limit of quantification, respectively.

S4. Biological Activity

For total phenolic content, sample solution (0.25 mL) was mixed with diluted Folin-Ciocalteu reagent (1 mL, 1:9) and shaken vigorously. After 3 min, Na₂CO₃ solution (0.75 mL, 1%) was added and the sample absorbance was read at 760 nm after 2 h incubation at room temperature. Total phenolic content was expressed as equivalents of gallic acid.

For total flavonoid content, sample solution (1 mL) was mixed with the same volume of aluminium trichloride (2%) in methanol. Similarly, a blank was prepared by adding sample solution (1 mL) to methanol (1 mL) without AlCl₃. The sample and blank absorbance were read at 415 nm after 10 min incubation at room temperature. Absorbance of the blank was subtracted from that of the sample. Total flavonoid content was expressed as equivalents of quercetin.

Total antioxidant activity of the samples was evaluated by phosphomolybdenum method. Sample solution (0.2 mL) was combined with 2 mL of reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). The sample absorbance was read at 695 nm after 90 min incubation at 95°C.

For 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, sample solution (1 mL) was added to a 4 mL of 0.004% methanol solution of DPPH. Sample absorbance was read at 517 nm after 30 min incubation at room temperature in dark.

For ABTS cation radical scavenging activity, briefly, ABTS.⁺ radical cation was produced directly by reacting 7 mM ABTS solution with 2.45 mM potassium persulfate and allowing the mixture to stand for 12-16 h in dark at the room temperature. Prior to beginning the assay, ABTS solution was diluted with methanol to obtain an absorbance of 0.700 ± 0.02 at 734 nm. Sample solution (1 mL) was added to ABTS solution (2 mL) and mixed. Sample absorbance was read at 734 nm after 7 min incubation at room temperature.

For metal chelating activity on ferrous ions, briefly, sample solution (2 mL) was added to $FeCl_2$ solution (0.05 mL, 2 mM). The reaction was initiated by the addition of 5 mM ferrozine (0.2 mL). Similarly, a blank was prepared by adding sample solution (2 mL) to $FeCl_2$ solution (0.05 mL, 2 mM) and water (0.2 mL) without ferrozine. Then, the sample and blank absorbance were read at 562 nm after 10 min incubation at room temperature.

For cupric ion reducing activity (CUPRAC), sample solution (0.5 mL) was added to a premixed reaction mixture containing $CuCl_2$ (1 mL, 10 mM), neocuproine (1 mL, 7.5 mM) and NH_4Ac buffer (1 mL, 1 M, pH 7.0). Similarly, a blank was prepared by adding sample solution (0.5 mL) to a premixed reaction mixture (3 mL) without $CuCl_2$. Then, the sample and blank absorbance were read at 450 nm after 30 min incubation at room temperature.

For ferric reducing antioxidant power (FRAP), sample solution (0.1 mL) was added to a premixed FRAP reagent (2 mL) containing acetate buffer (0.3 M, pH 3.6), 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ) (10 mM) in 40 mM HCl and ferric chloride (20 mM) in a ratio of 10:1:1 (v/v/v). Then, the sample absorbance was read at 593 nm after 30 min incubation at room temperature.

Inhibitory activity on α -amylase was performed using Caraway-Somogyi iodine/potassium iodide (IKI) method. Sample solution (25 μ L) was mixed with α -amylase solution (50 μ L) in phosphate buffer (pH 6.9 with 6 mM sodium chloride) in a 96-well micro plate and incubated for 10 min at 37°C. After pre-incubation, the reaction was initiated by the addition of starch solution (50 μ L, 0.05%). Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme solution (α -amylase). The reaction mixture was incubated 10 min at 37°C. The reaction was then stopped with the addition of HCl (25 μ L, 1 M). This was followed by the addition of iodine-potassium iodide solution (100 μ L). The sample and blank absorbance were read at 630 nm. Absorbance of the blank was subtracted from that of the sample.

For α -glucosidase inhibitory activity, sample solution (50 μ L) was mixed with glutathione (50 μ L), α -glucosidase solution (50 μ L) in phosphate buffer (pH 6.8) and PNPG (50 μ L) in a 96-well microplate and incubated for 15 min at 37°C. Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme (α -glucosidase) solution. The reaction was then stopped with

the addition of sodium carbonate (50 μ L, 0.2 M). The sample and blank absorbance were read at 400 nm. Absorbance of the blank was subtracted from that of the sample.

Tyrosinase inhibitory activity was measured using a modified dopachrome method with L-DOPA as substrate. Sample solution (25 μ L) was mixed with tyrosinase solution (40 μ l) and phosphate buffer (100 μ l, pH 6.8) in a 96-well microplate and incubated for 15 min at 25°C. The reaction was then initiated with the addition of L-DOPA (40 μ l). Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme (tyrosinase) solution. The sample and blank absorbance were read at 492 nm after 10 min incubation at 25°C.

Cholinesterase (ChE) inhibitory activity was measured using Ellman's method. Sample solution (50 $\mu L)$ was mixed with DTNB (125 $\mu L)$ and AChE (or BuChE) solutions (25 $\mu L)$ in Tris-HCl buffer (pH 8.0) in a 96-well microplate and incubated for 15 min at 25°C. The reaction was then initiated with the addition of acetylthiocholine iodide (ATCI) or butyrylthiocholine chloride (BTCl) (25 $\mu L)$. Similarly, a blank was prepared by adding sample solution to all reaction reagents without enzyme solutions (AChE or BuChE). The sample and blank absorbance were read at 405 nm after 10 min incubation at 25°C. Absorbance of the blank was subtracted from that of the sample.

The sample concentration, which decreases the initial concentration by 50% for enzyme inhibition, radical scavenging and metal chelation tests, was defined as IC₅₀, while the EC₅₀ values were calculated as sample concentration providing 0.500 absorbance for reducing power and phosphomolybdenum assays, and inhibiting the initial concentration by 50% for radical scavenging and metal chelation tests. The biological activities of the extracts were expressed as mg standard equivalent/g extract and compared with those of the standards, including trolox, ethylenediaminetetraacetic acid (disodium salt) (EDTA), galanthamine, kojic acid, and acarbose, used as positive controls.

S5. Statistical Analysis

All tests were carried out in triplicate. In order to determine the degree of statistical difference, Tukey's test was used. In addition, Pearson correlation analysis (by using SPSS v. 22.0) was performed to reveal the relationship of main phytochemical groups, phenolics and flavonoids, with activity.

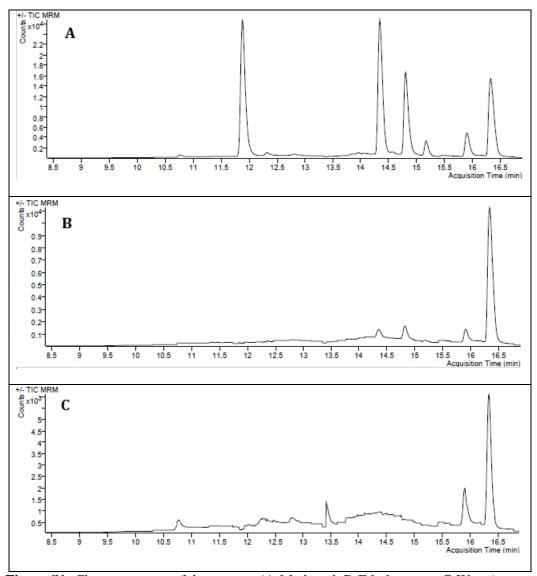
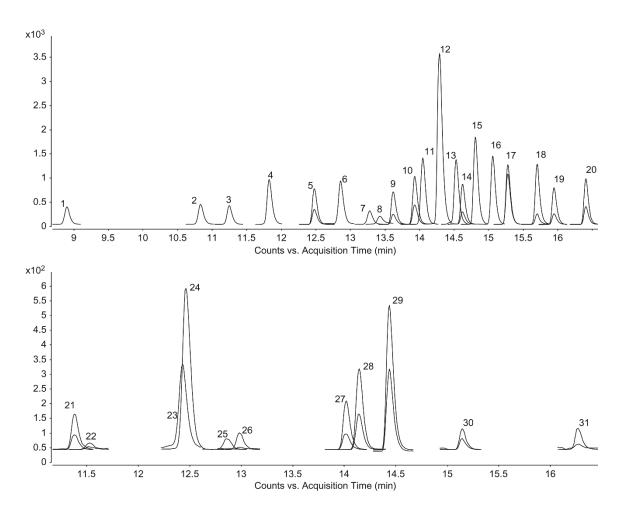



Figure S1: Chromatograms of the extracts (A-Methanol, B-Ethyl acetate, C-Water)

Figure S2: LC–ESI–MS/MS MRM chromatograms of phenolic compounds. 1–31 represent the chromatograms of gallic acid, protocatechuic acid, 3,4-dihydroxyphenylacetic acid, chlorogenic acid, (–)-epicatechin, caffeic acid, 3-hydroxybenzoic acid, vanillin, verbascoside, taxifolin, *p*-coumaric acid, luteolin 7-glucoside, hyperoside, rosmarinic acid, apigenin 7-glucoside, 2-hydroxycinnamic acid, eriodictyol, quercetin, luteolin, apigenin, (+)-catechin, pyrocatechol, 2,5-dihydroxybenzoic acid, 4-hydroxybenzoic acid, vanillic acid, syringic acid, sinapic acid, ferulic acid, hesperidin, pinoresinol and kaempferol, respectively. The phenolic concentrations are 400 μg/L.

Table S3: Percentage measurement uncertainty (%) values for total flavonoid and phenolic contents *O. caricum* extracts.

Assays	EtOAc MeOH extract		Water
	extract		extract
Total flavonoids (mg REs/g extract)	0.18	0.14	7.30
Total phenolics (mg GAEs/g extract)	0.97	0.80	0.63

Table S4: Percentage measurement uncertainty (%) values for concentration (μ g/g extract) of selected phenolic compounds in *O. caricum* extracts.

Compound	EtOAc	MeOH extract	Water
	extract		extract
Gallic acid	nd	2.60	5.27
Protocatechuic acid	2.50	0.10	0.52
Pyrocatechol	1.79	1.15	36.56 ± 4.07^a
3,4-Dihydroxyphenylacetic acid	4.42	0.11	1.13
(+)-Catechin	nd	0.87	nd
Chlorogenic acid	4.09	0.21	0.09
2,5-Dihydroxybenzoic acid	0.16	6.20	0.72
4-Hydroxybenzoic acid	2.20	0.88	0.03
(-)-Epicatechin	3.79	1.69	1.38
Vanillic acid	nd	3.31	1.06
Caffeic acid	0.99	0.09	0.42
Syringic acid	10.00^{c}	0.07	3.96
3-Hydroxybenzoic acid	0.26	2.59	10.54
Vanillin	1.00	1.02	1.67
Verbascoside	nd	1.61	0.81
Taxifolin	nd	0.15	6.24
Sinapic acid	2.64	16.17	10.57
<i>p</i> -Coumaric acid	4.93	0.34	0.47
Ferulic acid	5.22	1.69	3.11
Luteolin 7-glucoside	2.77	0.14	nd
Hesperidin	nd	1.80	2.13
Hyperoside	1.78	0.15	8.28
Rosmarinic acid	5.77	3.64	0.90
Apigenin 7-glucoside	0.89	0.51	nd
2-Hydroxycinnamic acid	0.15	7.87	4.02
Pinoresinol	2.71	0.43	nd
Eriodictyol	4.10	0.11	6.53
Quercetin	nd	1.84	15.63
Luteolin	2.84	0.12	1.53
Kaempferol	1.65	0.01	1.13
Apigenin	2.92	0.75	0.28

nd: not determined

Table S5: Percentage measurement uncertainty (%) values for antioxidant activity of *O. caricum* extracts.

Antioxidant activity	EtOAc	MeOH	Water	Trolox	EDTA
Phosphomolybdenum (EC ₅₀ :	1.02	7.53	3.05	3.39	
mg/mL)					
DPPH scavenging (IC ₅₀ : mg/mL)	1.98	0.91	3.23	1.89	
ABTS scavenging (IC ₅₀ : mg/mL)	6.01	0.77	0.70	10.00	
CUPRAC reducing (EC ₅₀ : mg/mL)	1.30	1.15	0.70	10.00	
FRAP reducing (EC ₅₀ : mg/mL)	0.41	1.32	0.88	6.00	
Ferrous ion chelating (IC ₅₀ : mg/mL)	0.93	0.79	0.85		3.85
Phosphomolybdenum (mg TEs/g)	0.98	7.51	3.14		
DPPH scavenging (mg TEs/g)	2.06	0.14	3.52		
ABTS scavenging (mg TEs/g)	5.95	1.11	0.85		
CUPRAC reducing (mg TEs/g)	1.17	1.00	0.58		
FRAP reducing (mg TEs/g)	0.26	0.93	0.79		
Ferrous ion chelating (mg EDTAEs/g)	0.64	0.67	0.13		

Table S6: Percentage measurement uncertainty (%) values for enzyme inhibition activity of *O. caricum* extracts.

Enzyme inhibitory activity	EtOA	MeO	Water	Galan	Acarb	Kojic
	c	H		thami	ose	acid
				ne		
AChE inhibition (IC ₅₀ : mg/mL)	1.05	0.85	nd	8.33		
BChE inhibition (IC ₅₀ : mg/mL)	16.67	8.62	nd	8.82		
α-Amylase inhibition (IC ₅₀ : mg/mL)	0.84	0.31	0.12		2.11	
α -Glucosidase inhibition (IC ₅₀ : mg/mL)	0.85	0.45	nd		1.20	
Tyrosinase inhibition (IC ₅₀ : mg/mL)	2.26	2.51	1.70			2.50
AChE inhibition (mg GALAEs/g)	0.26	0.64	nd			
BChE inhibition (mg GALAEs/g)	16.89	9.38	nd			
α-Amylase inhibition (mgACEs/g)	1.02	0.12	0.04			
α-Glucosidase inhibition (mgACEs/g)	0.36	0.45	2.66			
Tyrosinase inhibition (mg KAEs/g)	2.27	2.50	1.70			

nd: not determined

References

[1] C. Sarikurkcu, S.S. Sahinler, O. Ceylan and B. Tepe (2020). *Onosma pulchra*: Phytochemical composition, antioxidant, skin-whitening and anti-diabetic activity, *Ind. Crop. Prod.* **154**, 112632.