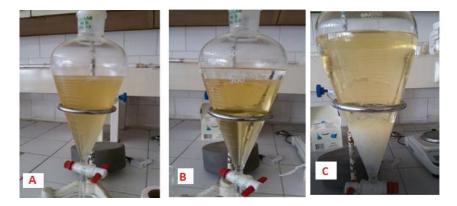
Supporting Information

J. Chem. Metrol. 15:2 (2021) 172-185

Isolation of amygdalin epimer at high diastereomeric purity and its structural characterization by spectroscopic and

Q-TOF LC-MS methods


Pshtiwan Raheem Sabır ¹, İrfan Çapan ^{2,3}*, Ayhan İbrahim Aysal ³ and Süleyman Servi ⁴

¹ Garmian University, College of Education, Chemistry Department, Kalar, Sulaymaneyah-Iraq ^{2*} Gazi University, Technical Sciences Vocational College, Department of Polymer Technology, 06560 Ankara-Türkiye

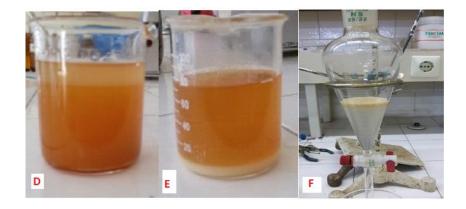

³ Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara- Türkiye ⁴ Fırat University, Faculty of Science, Department of Chemistry, 23169 Elazığ- Türkiye

Table of Contents	Page
Figure S1: Liquid-Liquid Extractions (LLE); A = n-hexzane, B = petrelium ether, C = chloroform	3
Figure S2: $D = n$ -hexzane, $E = petrelium$ ether, $F = chloroform$	3
Figure S3: ATR-IR spectrum of the amygdalin-free component of the extract	3
Figure S4: 1H-NMR (400 MHz, CDCl3) spectrum of the amygdalin-free component of the	3
extract	
Figure S5: 13C-NMR (400 MHz, CDCl3) spectrum of the amygdalin-free component of the	4
extract	
Figure S6:(A) ATR-FTIR spectrum of the extract obtained without any purification	5
operations; (B) ATR-FTIR spectrum of the isolated amygdalin at high diastereomeric purity	
Figure S7: O-H bonds region of amygdalin	5
Figure S8: Nitrile region of amygdalin	5
Figure S9: C-O-H and C-O-C bond region of amygdalin	6
Figure S10: Numbering system used to evaluate NMR spectra of amygdalin. It is not related	6
to the IUPAC numbering system	

Figure S11: 1 H-NMR (400 MHz, DMSO-d6) spectrum of the extract obtained after LLE	7
Figure S12: 13 C-NMR (100 MHz, DMSO-d6) spectrum of the extract obtained after LLE	7
Figure S13: 1H-NMR (400 MHz, DMSO-d6) spectrum of the amygdalin isolated at high	8
purity after column chromatography	
Figure S14: The 1H-NMR (400 MHz, D20) spectrum of the amygdalin after column	9
chromatography	
Figure S15: 13C-NMR (100 MHz, D2O) spectrum of the amygdalin isolated after column	10
chromatography	
Figure S16: 13C-NMR (100 MHz, DMSO-d6) spectrum of the amygdalin isolated at high	11
purity column chromatography	
Figure S17: The UV-VIS spectrum of the isolated pure amygdalin.	11
Figure S18:TIC of the sample in MS-MS mode	11
Figure S19: MS spectrum of peak at RT 1.41	11
Figure S20: Isotopic distribution of 456 ion at RT 1.42 showing experimental and calculated	12
values	
Figure S21: MS spectrum of peak at RT 4.17	12
Figure S22: Isotopic distribution of 456 ion at RT 4.17	12

Figure S1: Liquid-Liquid Extractions (LLE); A = n-hexzane, B = petrelium ether, C = chloroform

Figure S2: Decantation Methods; D = n-hexzane, E = petrelium ether, F = chloroform

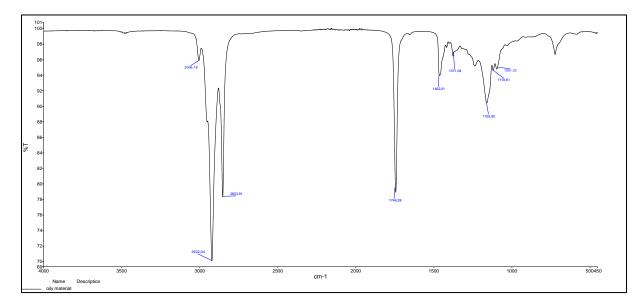


Figure S3: ATR-IR spectrum of the amygdalin-free component of the extract

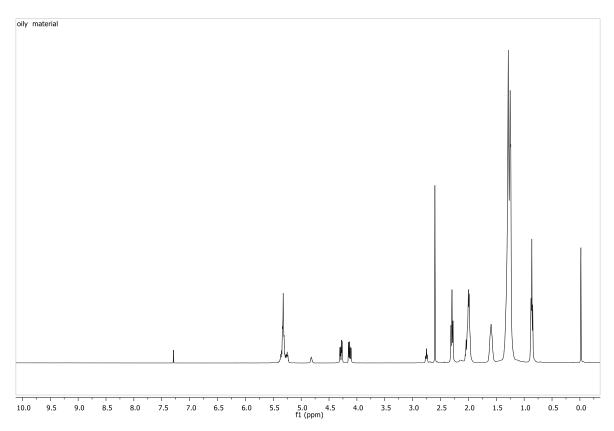
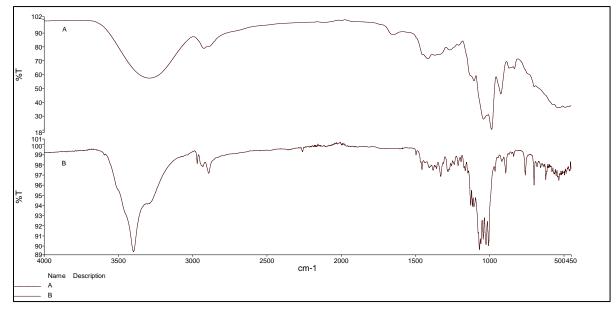



Figure S4: ¹H-NMR (400 MHz, CDCl₃) spectrum of the amygdalin-free component of the extract

Figure S5: ¹³C-NMR (400 MHz, CDCl₃) spectrum of the amygdalin-free component of the extract

Figure S6 :(A) ATR-FTIR spectrum of the extract obtained without any purification operations; (B) ATR-FTIR spectrum of the isolated amygdalin at high diastereomeric purity

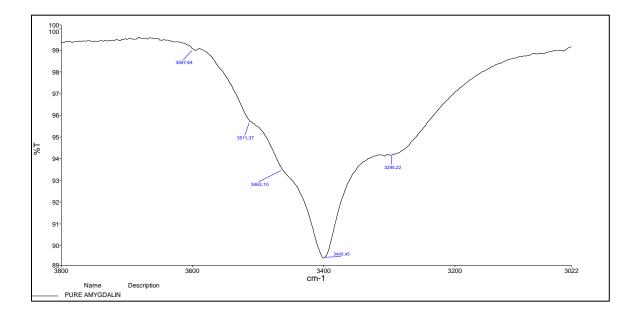


Figure S7: O-H bonds region of amygdalin

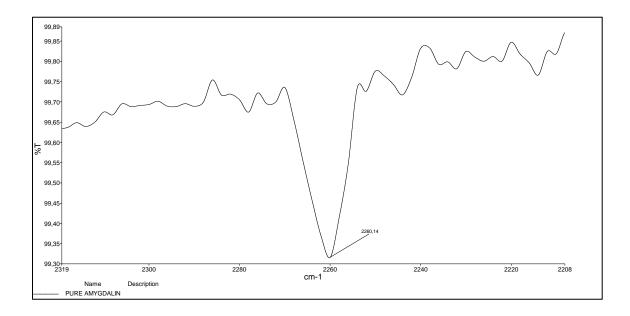


Figure S8: Nitrile region of amygdalin

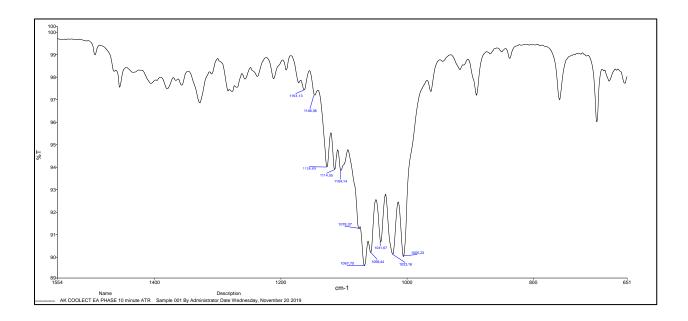


Figure S9: C-O-H and C-O-C bond region of amygdalin

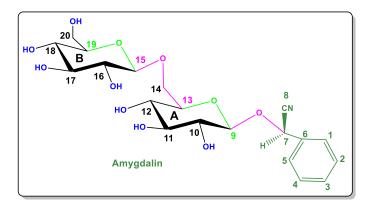
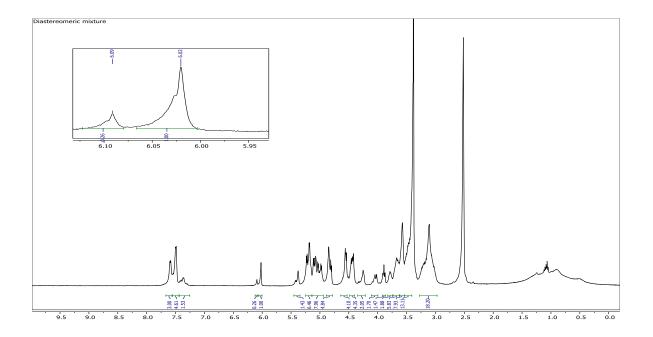



Figure S10: Numbering system used to evaluate NMR spectra of amygdalin. It is not related to the IUPAC numbering system

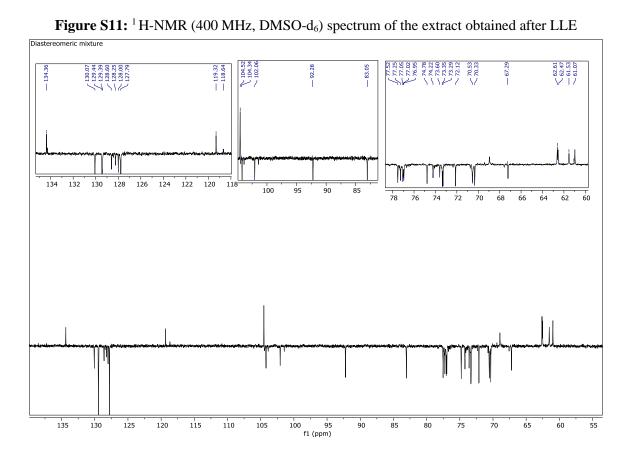
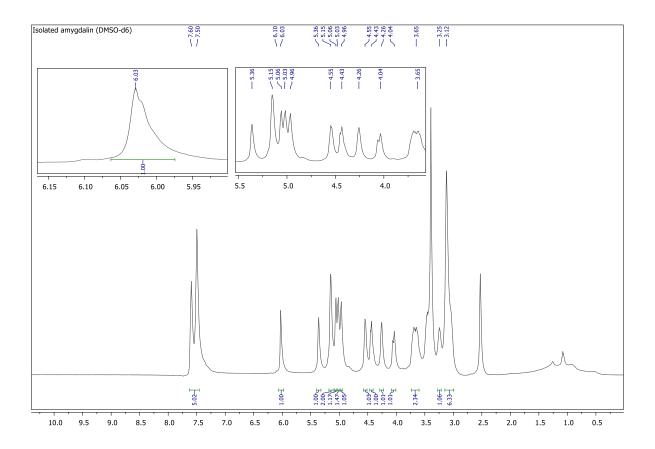



Figure S12: ¹³C-NMR (100 MHz, DMSO-d₆) spectrum of the extract obtained after LLE

Figure S13: ¹H-NMR (400 MHz, DMSO-d₆) spectrum of the amygdalin isolated at high purity after column chromatography

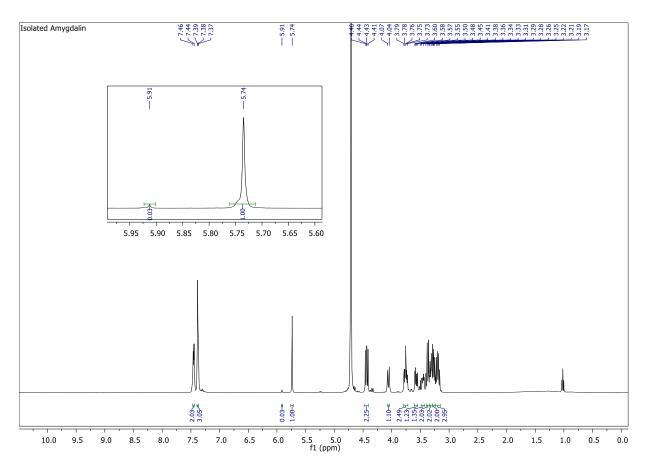


Figure S14: The ¹H-NMR (400 MHz, D₂0) spectrum of the amygdalin after column chromatography

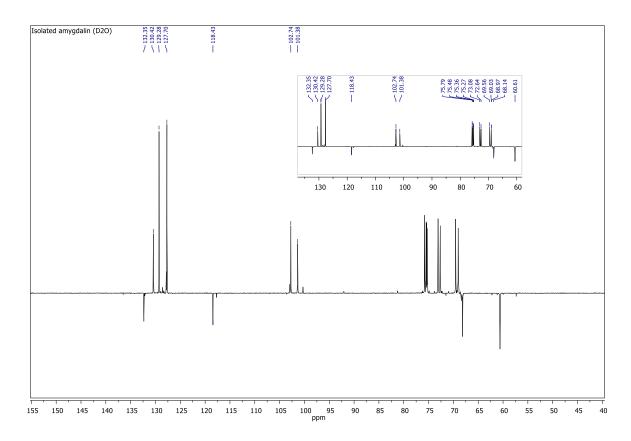
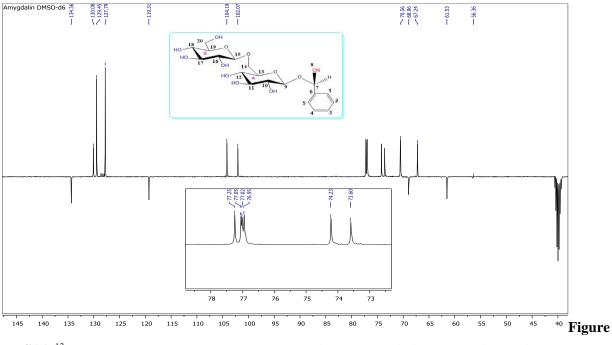



Figure S15: ¹³C-NMR (100 MHz, D₂O) spectrum of the amygdalin isolated after column chromatography

S16: ¹³C-NMR (100 MHz, DMSO-d₆) spectrum of the amygdalin isolated at high purity column chromatography

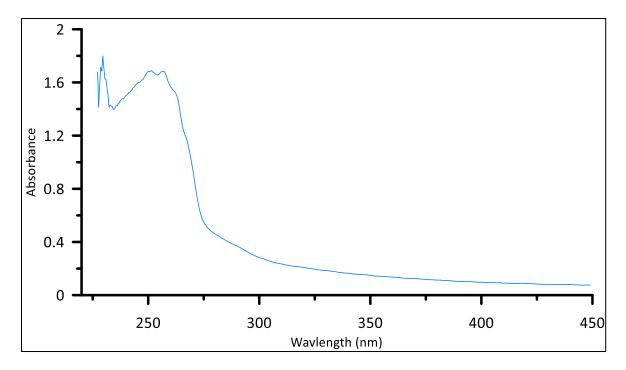


Figure S17: The UV-VIS spectrum of the isolated pure amygdalin.

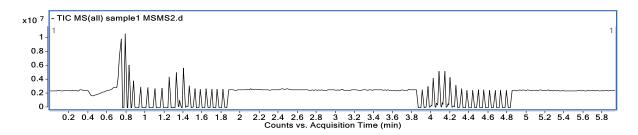


Figure S18: TIC of the sample in MS-MS mode

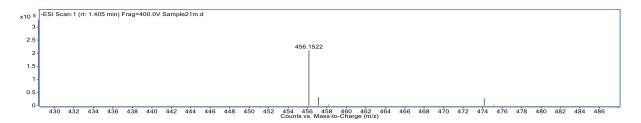


Figure S19: MS spectrum of peak at RT 1.41

🛱 Au	tom	atically Show Colur	mns 🛗 🖼 🐋	l 🖬 👂	à I 🤧 🕺 I	000									
Bea	at T	⊽+¤ ID Source ⊽+¤	Name 🔽 😐 🛛 For	mula	v + Species *	∀+ ₽	m/z ⊽+¤ Sc	ore⊽⊽≠PDif	(ppm)	∵r⇔ Sc	ore (MFG) 🕆 🗝	Mass 🔽 🗝			
• •		MFG	C20 H2	7 N O 1 1	(M-H)-		456.1522 87	.71 -2.)9	87	.71	457.1594			
	Sco	re (iso. abund) 🛛 🐨	🕈 Score (mass) 🔽 🕂	Score (IFG, MS/MS)	7 - s	Score (MS) 🔽	- Score (MFC) 🗸 🕫	Score (i	so. spacing) 🔽 -	P Height ⊽-P	Ion Formula	V ⊕ Species V +	m/z 💎
	65.46		95.68		4	87.71	87.71		98.47		210776.2 C	20 H26 N O11	(M-H)-	456.152	
		Height (Calc) 🛛 🕆 🛱	Height Sum% (Calc)	₩÷ He	ight % (Cale) 5	7-1= n	n/z (Calc) ⊽≉	Diff (mDa) 🔽	+ He	ight ⊽ +¤	Height % 💎 🖶	Height Sum % 5	7+ m/z - +	Diff (ppm) 🔽 🖶	
		194524.4	78.5	10	D	4	456.1511	-1.1	21	0776.2	100	85	456.1522	-2.31	
		44185.9	17.8	22	7	4	457.1544	-0.4	33	032.2	15.7	13.3	457.1549	-0.96	
		9186.5	3.7	4		4	458,1566	-0.1	40	88.5	1.9	1.6	458,1567	-0.23	

Figure S20. Isotopic distribution of 456 ion at RT 1.42 showing experimental and calculated values

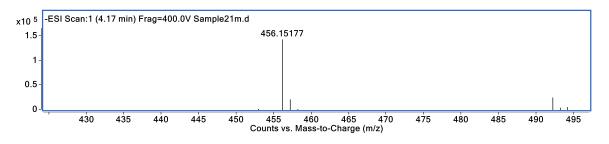


Figure S21: MS spectrum of peak at RT 4.17

· ·				ation Re							_														
<u>ا</u>	Autor	mati	ally Sho	ow Colur	nns	* 8	네 🔀	6	R	🤹 👧															
В	est	7+	ID Sou	rce ⊽+¤	Nan	ne ⊽+¤	For	nula	7₽	Species	7₽	m/z	⊽⊅	Score	⊽∀₽	Score	(RT) 🖓 🕫	RT Diff ⊽‡	Diff (pp	m) \7 +¤	Score (L	ib) ⊽ 中:	Score (DB) 🗸	+ Sco	ore (MFG) 7
	۲		MFG				C20 H2	7 N O1	1	(M-H)-		456.15	5177	88.09					-1.16					88.	09
	Spe	ecies	7-	m/z S	7+Þ	Score (i	so. abur	d) ⊽⊀	Sco	re (mass)	7-10	Score	(MFG	i, MS/I	/IS) ⊽+=	Score	e (MS) 🖓 🛱	Score (MF	G)⊽ ∀ +	Score	(iso. spa	cinq) ⊽+=	Height ⊽+Þ	lon f	Formula 7
	(M-H)- 456.15		456.151	77	77 61.88 98.65			5					88.09		9	88.09		98.43			143313.3	C20 H	C20 H26 N O11		
		Hei	aht (Calc) 7+	Heid	aht Sum'	% (Calc)	\	Height	t % (Calc)7₽	m/z ((Calc) ٦	7 4 0)iff (mDa) 7+	Height VH	⊨ Height %		ight Sum	% ⊽≠	m/z ⊽	- ⊐ Diff (ppm)) 🖓 🛱	
		1:	1868.8		78.5				100			456.1			0.6		143313.3	100	85			456.1517			
		2	953.8		17.8	1			22.7			457.1	5444	0)		21704	15.1	12	.9		457.1544	48 -0.08		
		6	27.6		3.7				4.7			458.1	5661	0	.9		3032.9	2.1	1.0	3		458.1557	72 1.94		

Figure S22: Isotopic distribution of 456 ion at RT 4.17