Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

A New *ent*-Atisane Diterpenoid from the Stems of *Euphorbia* royleana

Ying Lu^{1, 2} and Weiqiang Fei^{3,*}

¹ Department of Pharmacy, The First People's Hospital of Linping District, Hangzhou 311100, China ² School of Medicine, Zhejiang University, Hangzhou 310058, China ³ Hangzhou Vocational & Technical College, Hangzhou 310018, China

Table of Contents	Page
1. General experimental procedures	2
2. Extraction, isolation, and purification	2
Table S1: Energy (298.15 K) analysis for 3 <i>S</i> ,5 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,10 <i>R</i> ,12 <i>S</i> ,13 <i>R</i> -1	2
Table S2: Calculated ECD data for 3 <i>S</i> ,5 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,10 <i>R</i> ,12 <i>S</i> ,13 <i>R</i> -1	3
Figure S1: Optimized lowest energy conformers for 3S,5S,8S,9S,10R,12S,13R-1	4
Figure S2: Scifinder search of new compound 1	4
Figure S3: HR-ESI-MS spectrum of 1	5
Figure S4: ¹ H-NMR (400 MHz, CDCl ₃) spectrum of 1	6
Figure S5: ¹³ C-NMR and DEPT 135 (100 MHz, CDCl ₃) spectrum of 1	7
Figure S6: HSQC spectrum of 1	8
Figure S7: HMBC spectrum of 1	9
Figure S8: ¹ H– ¹ H COSY spectrum of 1	10
Figure S9: NOESY spectrum of 1	11

1. General experimental procedures

Optical rotations was measured on a Rudolph Research Autopol III automatic polarimeter. IR spectrum was obtained using a Thermo-Nicolet-6700 FT-IR microscopic spectroscopy. ECD spectrum was measured on an Applied Photophysics Chirascan spectrometer. NMR spectra were measured on a Bruker AM-400 spectrometer. HRESIMS were performed on an Agilent-6210-LC/TOF mass spectrometer. TLC was performed on precoated silica gel GF 254 plates (Marine Chemical Ltd., Qingdao, China). Silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd.) and Sephadex LH-20 (25–100 μ m, Pharmacia Biotech) were used for column chromatography (CC).

2. Extraction, isolation, and purification

The dried and powdered plant material of *Euphorbia royleana* (5 kg) was extracted three times with 95% EtOH (30 L) at room temperature, and yield a crude extract (288 g) after evaporation of the solvent in vacuo. Then, the crude extract was suspended in warm water and partitioned with EtOAc to get an EtOAc-soluble (115 g). The EtOAc-soluble fraction was separated by silica gel CC (CH₂Cl₂-MeOH, 200:1 \rightarrow 1:1) to obtain eight fractions (L1-L8). Compounds 1 (22 mg), 3 (13 mg) and 4 (30 mg) were obtained from fraction L4 (2.9 g) by repeated Sephadex LH-20 and silica gel CC. Fraction L6 (3.6 g) was subjected to silica gel column (petroleum ether-EtOAc, 10:1 \rightarrow 0:1) to obtain five subfractions (L6a-L6e). Fraction L6b (330 mg) and L6c (160 mg) was subjected to repeated silica gel CC to afford compounds 2 (8 mg) and 5 (15 mg), respectively. Fraction L6e (600 mg) was purified by Sephadex LH-20 CC to obtain compound 6 (36 mg).

Table S1: Energy (298.15 K) analysis for 3*S*,5*S*,8*S*,9*S*,10*R*,12*S*,13*R*-1

Conf.	G (Hartree)	ΔG (Kcal/mol)	Boltzmann Distribution
C1	-1232.074486	1.20356418	0.115840824
C2	-1232.076404	0	0.884159176

Table S2: Calculated ECD data for 3*S*,5*S*,8*S*,9*S*,10*R*,12*S*,13*R*-1

C1		(C2		
State	Excitation	Rotatory	Excitation	Rotatory	
	energies(eV)	Strengths*	energies(eV)	Strengths*	
1	3.9612	7.5584	3.9744	11.9831	
2	4.3334	-2.844	4.3343	-2.9525	
3	5.8226	2.9783	5.8311	0.8258	
4	5.9661	-10.9452	5.987	-14.8491	
5	6.5294	12.5411	6.5313	11.4832	
6	6.6849	28.2399	6.7015	29.3786	
7	6.8682	52.145	6.8854	62.087	
8	6.8875	-57.6043	6.9107	-68.3077	
9	7.0409	-2.8289	7.0359	-4.0254	
10	7.1327	18.9343	7.1411	20.1411	
11	7.2553	-4.0164	7.2636	-18.531	
12	7.3635	-16.8892	7.3697	14.4339	
13	7.4538	12.266	7.425	16.6958	
14	7.5333	6.9209	7.5057	-12.3458	
15	7.577	-20.6688	7.5359	-1.4285	
16	7.604	-2.2861	7.5938	-3.1082	
17	7.6829	4.8218	7.71	-46.2817	
18	7.7052	-44.4243	7.7402	23.4139	
19	7.7474	-23.4273	7.7497	-9.5952	
20	7.7778	-23.7584	7.7735	-63.529	
21	7.8477	-22.9562	7.8203	12.8292	
22	7.8828	15.1135	7.8939	9.1881	
23	7.964	27.7288	7.9725	23.5217	
24	8.0034	-18.2577	8.0152	-7.1854	
25	8.0324	21.1693	8.037	20.5445	
26	8.0783	-10.5271	8.1092	-7.3227	
27	8.1738	10.7671	8.1547	-14.132	
28	8.2204	-1.4907	8.191	27.8496	
29	8.2335	-35.3406	8.2825	-17.0253	
30	8.2836	-15.5594	8.2939	-4.5065	

Conformational analyses of 1 were carried out via Monte Carlo searching using molecular mechanism with MMFF force field in the *Spartan 18* program with an energy cutoff of 5.0 Kcal/mol. The results showed three lowest energy conformers for 1. These conformers were re-optimized using DFT at the b3lyp/6-31g(d) level in gas phase using the Gaussian 09 program. Two conformers of 1 (Figure S1) whose relative Gibbs free energies in the range of 0–1.5 Kcal/mol were refined and considered for next step. All the re-optimized conformers mentioned above were applied for theoretical ECD calculation.

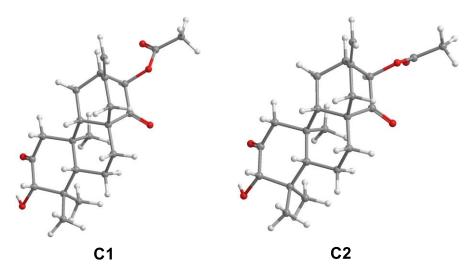


Figure S1: Optimized lowest energy conformers for 3S,5S,8S,9S,10R,12S,13R-1

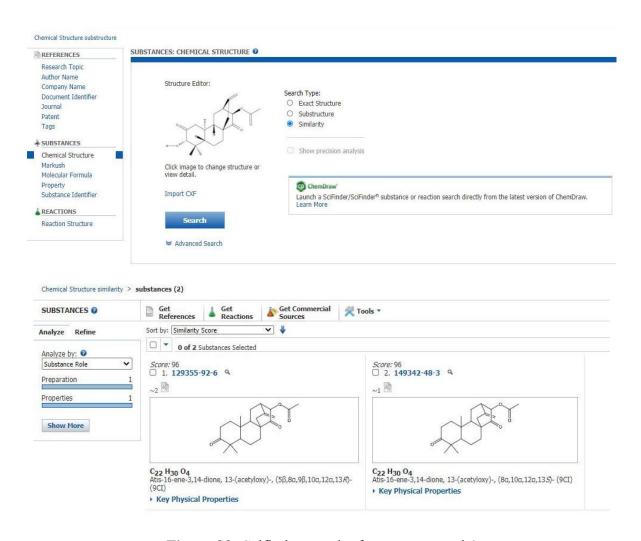
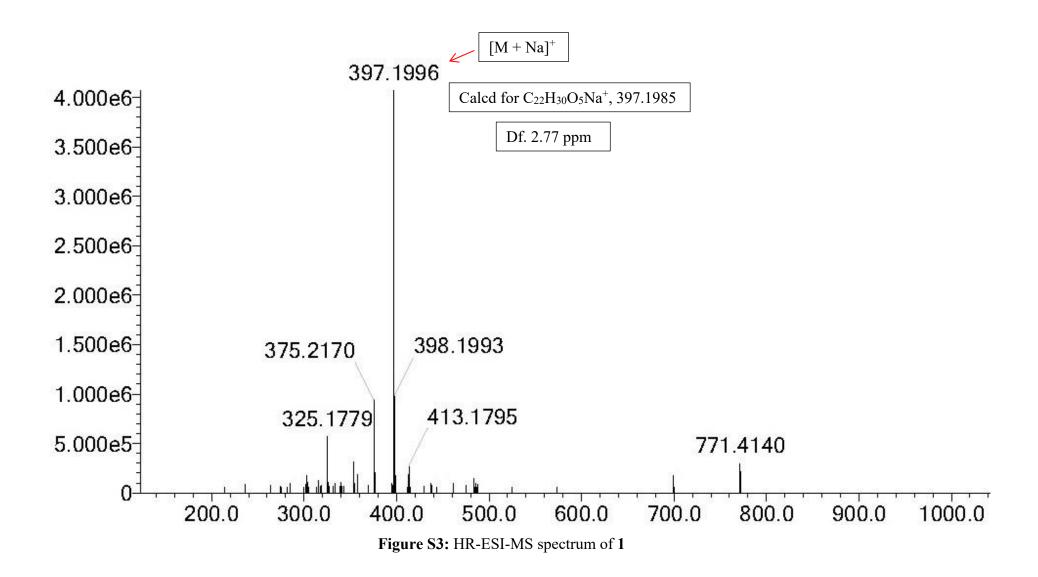



Figure S2: Scifinder search of new compound 1

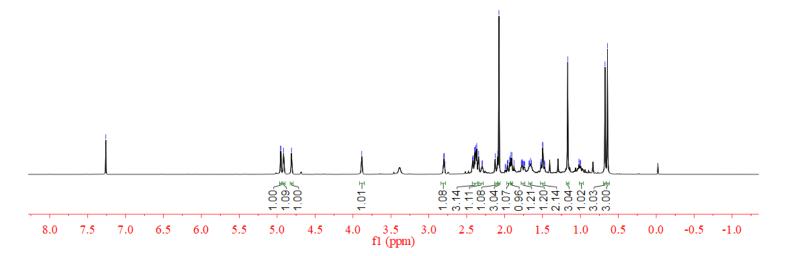


Figure S4: ¹H-NMR (400 MHz, CDCl₃) spectrum of 1

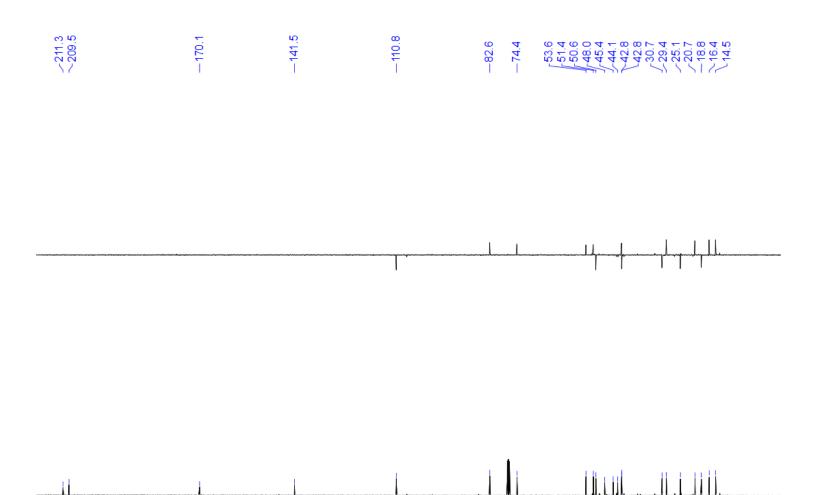


Figure S5: ¹³C-NMR and DEPT 135 (100 MHz, CDCl₃) spectrum of 1

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

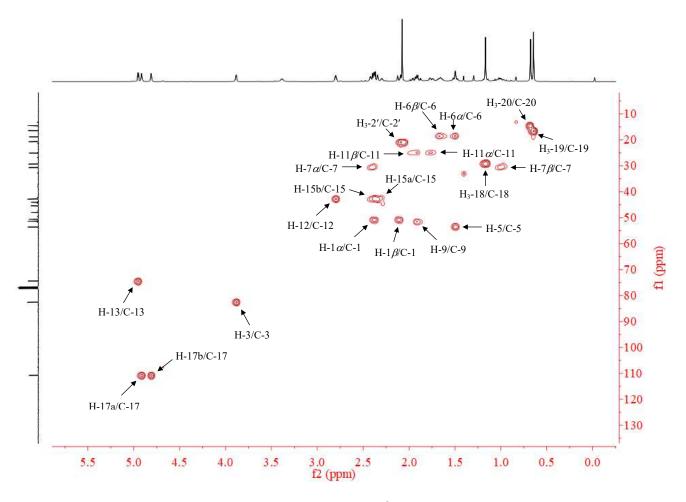


Figure S6: HSQC spectrum of 1

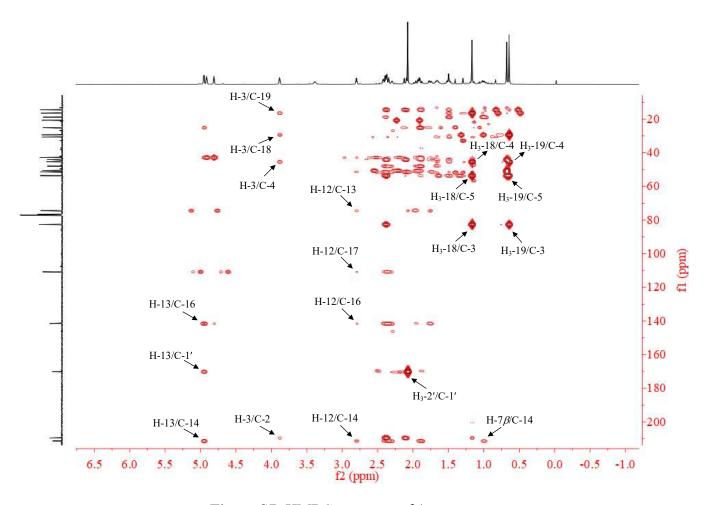


Figure S7: HMBC spectrum of 1

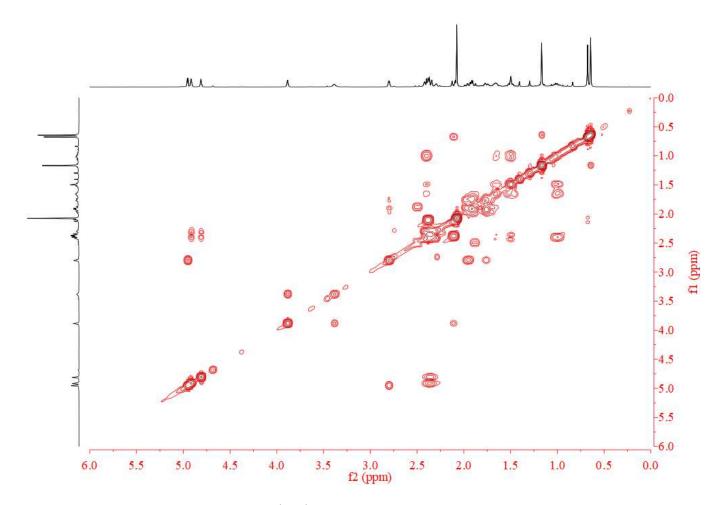


Figure S8: ¹H-¹H COSY spectrum of 1

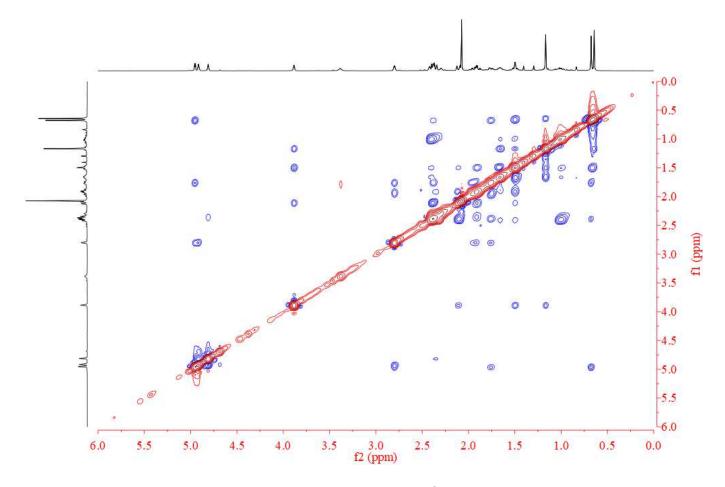


Figure S9: NOESY spectrum of 1