Supporting Information

Rec. Nat. Prod. 16:6 (2022) 614-621

New Ergostane-type Steroid Produced by an Endophytic Fungus *Fusarium phaseoli* Isolated from *Chisocheton macrophyllus* (Meliaceae)

Aprilia Permata Sari¹, Nurlelasari¹, Azmi Azhari¹, Desi Harneti¹, Rani Maharani^{1,2}, Tri Mayanti¹, Kindi Farabi¹, Darwati¹, Unang Supratman ^{1,2*}, Sofa Fajriah³, Mohamad Nurul Azmi⁴ and Yoshihito Shiono⁵

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor 45363, West Java, Indonesia

²Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor 45363, West Java, Indonesia

³Research Center for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK Serpong Tangerang Selatan, 15314, Banten, Indonesia ⁴School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden,

> Penang, Malaysia ⁵Department of Bioresources Engineering, Faculty of Agriculture Yamagata University, Tsuruoka-shi, Yamagata 997-8555, Japan

Table of Contents	Page
Figure S1: HRTOF-MS spectrum of 1	2
Figure S2: HRTOF-MS spectrum of methyl oleate	3
Figure S3: HRTOF-MS spectrum of steroid moiety of 1	4
Figure S4: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1	5
Figure S5: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 1	6
Figure S6: DEPT135 (125 MHz, CDCl ₃) spectrum of 1	7
Figure S7: HSQC spectrum of 1	8
Figure S8: HMBC spectrum of 1	9
Figure S9: HMBC spectrum of 1 (From $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 10 ppm)	10
Figure S10: HMBC spectrum of 1 (From $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 30 ppm)	11
Figure S11: HMBC spectrum of 1 (From $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 30 ppm)	12
Figure S12: HMBC spectrum of 1 (From $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 30 ppm)	13
Figure S13: HMBC spectrum of 1 (From $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 20 ppm)	14
Figure S14: HMBC spectrum of 1 (From $\delta_{\rm C}$ 170 ppm to $\delta_{\rm C}$ 20 ppm)	15
Figure S15: ¹ H- ¹ H COSY spectrum of 1	16
Figure S16: NOESY spectrum of 1	17

Elemental Composition Report	Page 1
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3	
Monoisotopic Mass, Even Electron Ions 223 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 F1 1 139 (2.380) Cm (136:150) TOF MS ES+	3.010+001
100¬ 679.6030	3.010+001
679.5513 679.5079 679.4614 679.6450 679.93932 679.6450 679.9592 679.6450 679.9592 679.6450 679.9592 679.6450 679.9592 679.6450 679.5513 679.6450 679.5513 679.6450 679.5513 679.6450 679.5513 679.6450 679.5513 679.6450 679.5513 679.5513 679.6450 679.5513 679.6450 679.5513 679.5513 679.6450 679.5513 679.5513 679.6450 679.5513 679.5513 679.6450 679.5513 679.5513 679.5513 679.6450 679.5513 679.5513 679.6450 679.5513 679.5513 679.5513 679.6450 679.5513 679.555 679.55	680.4267 80.2366
Minimum: -1.5 Maximum: 5.0 10.0 50.0	
Mass Calc. Mass mDa PPM DBE i-FIT i-FIT	(Norm) Formula
679.6030 679.6029 0.1 0.1 7.5 56.7 0.0	C46 H79 O3

Figure S1: HRTOF-MS spectrum of 1

Elemental	Composition F	Report									Page 1
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3											
Monoisotopic Mass, Even Electron Ions 96 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 F1 OLEIC 69 (1.190) Cm (67:69) TOF MS ES+											
100-	100¬ 297.3595 2.12e+002									2.12e+002	
297.2779											
- 295.91	70 296.1733 296.	4031	7	.1250	297.5590 297.68	59 298.26	644 290.	29	98.6159	298.8	8843_298.9981 m/z
	296.00	296.50	297.00		297.50	298.00		298.5	50		299.00
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT ((Norm)	Form	ula		
297.2779	297.2770 297.2794	0.9 -1.5	3.0 -5.0	-1.5 1.5	68.5 68.6	0.7 0.7		C17 C19	H38 H37	02 02	Na

Figure S2: HRTOF-MS spectrum of methyl oleate

Elemental Composition Report											
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3											
Monoisotopic Mass, Even Electron Ions 178 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1 F1 1 99 (1.700) Cm (99:101) TOF MS ES+											
100 415.3569 6.4										6.40e+000	
-											
%_				415.2716	415.3969						
-		414.9609 	415.224 <u>;</u> 	2	415.4374	415.671	6 415.7474				
414.60	414.80	415.00	415.2	20	415.40	415.60	415.80	416.0	D	416.20	
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm) Form	ula			
415.3569	415.3552 415.3576	-1.3 -3.7	-3.1 -8.9	2.5	23.5 23.6	0.6 0.7	C26 C28	H48 O2 H47 O2	Na		

Figure S3: HRTOF-MS spectrum of steroid moiety of 1

Figure S4: ¹H-NMR (500 MHz, CDCl₃) spectrum of 1

Figure S5: ¹³C-NMR (125 MHz, CDCl₃) spectrum of 1

Figure S6: DEPT135 (125 MHz, $CDCl_3$) spectrum of 1

Figure S7: HSQC spectrum of 1

Figure S8: HMBC spectrum of 1

Figure S9: HMBC spectrum of 1 (From $\delta_{c}60$ ppm to δ_{c} 10 ppm)

Figure S10: HMBC spectrum of 1 (From $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 30 ppm)

Figure S11: HMBC spectrum of 1 (From δ_C 140 ppm to δ_C 30 ppm)

Figure S12: HMBC spectrum of 1 (From δ_C 140 ppm to δ_C 30 ppm)

Figure S13: HMBC spectrum of 1 (From $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 20 ppm)

Figure S14: HMBC spectrum of 1 (From δ_{C} 170 ppm to δ_{C} 20 ppm)

Figure S15: ¹H-¹H COSY spectrum of 1

Figure S16: NOESY spectrum of 1