Supporting Information

Rec. Nat. Prod. 16:6 (2022) 633-638

A New Indole Glucoside and Other Constituents from the Sea Cucumber-Derived *Aspergillus fumigatus* M580 and Their Biological Activities

Cao Duc Tuan^{1*}, Nguyen Van Hung^{1*}Le Thi Hong Minh², Hoang Thi Hong Lien³, Jung-Woo Chae⁴, Hwi-yeol Yun⁴, Young-Ho Kim⁴, Pham Van Cuong² and Doan Thi Mai Huong²

¹Hai Phong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem, Haiphong, Vietnam ²Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

³Buon Ma Thuot University, 298 Ha Huy Tap, Buon Ma Thuot, Daklak, Vietnam ⁴College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea

Table of Contents	Page
Figure S1: ¹ H-NMR spectrum of compound 1	6
Figure S2: ¹³ C-NMR spectrum of compound 1	6
Figure S3: HSQC spectrum of compound 1	7
Figure S4: HMBC spectrum of compound 1	7
Figure S5: COSY spectrum of compound 1	8
Figure S6: ¹ H-NMR spectrum of compound 2	8
Figure S7: ¹³ C-NMR spectrum of compound 2	9
Figure S8: ¹ H-NMR spectrum of compound 3	9
Figure S9: ¹³ C-NMR spectrum of compound 3	10
Figure S10: ¹ H-NMR spectrum of compound 4	10
Figure S11: ¹³ C-NMR spectrum of compound 4	11
Figure S12: ¹ H-NMR spectrum of compound 5	11
Figure S13: ¹³ C-NMR spectrum of compound 5	12
Figure S14: ¹ H-NMR spectrum of compound 6	12
Figure S15: ¹³ C-NMR spectrum of compound 6	13
Figure S16: ¹ H-NMR spectrum of compound 7	13
Figure S17: ¹³ C-NMR spectrum of compound 7	14
Figure S18: ¹ H-NMR spectrum of compound 8	14
Figure S19: ¹³ C-NMR spectrum of compound 8	15
Figure S20: ¹ H-NMR spectrum of compound 9	15

Figure S21: ¹³ C-NMR spectrum of compound 9	16
Figure S22: ¹ H-NMR spectrum of compound 10	16
Figure S23: ¹³ C-NMR spectrum of compound 10	17
Figure S24: ¹ H-NMR spectrum of compound 11	17
Figure S25: ¹³ C-NMR spectrum of compound 11	18
Figure S26: α -Glucosidase inhibitory activity of compounds 1–10.	18
Figure S27: Photos of collected sea cucumber	19
Figure S28: Figure: Popular bond types of the collected sea cucumber (10X)	20
Figure S29: Bowls and ellipsoids bonds of collected sea cucumber (20X)	20
Figure S30: Figure: Ellipsoids, Rosettes and Rods bonds of collected sea cucumber (20X)	21
Figure S31: The results of SciFinder searching for new compound	21
Table S1: 1H and 13C-NMR data of compound 2 and Fumiquinazoline D	22
Table S2: ¹ H and ¹³ C-NMR data of compound 3 and Fumiquinazoline C	22
Table S3: 1H and 13C-NMR data of compound 4 and Fumiquinazoline J	23
Table S4: ¹ H and ¹³ C-NMR data of compound 5 and bisdethiobis(methylthio)gliotoxin	23
Table S5: ¹ H and ¹³ C-NMR data of compound 6 and cyclo(L-prolyl-L-tryptophane)	24
Table S6: ¹ H and ¹³ C-NMR data of compound 7 and tryprostatin B	24
Table S7: ¹ H and 13C-NMR data of compound 8 and 12,13-dihydroxy-fumitremorgin C	25
Table S8: ¹ H and ¹³ C-NMR data of compound 9 and 6-methoxyspirotryprostatin B	25
Table S9: 1H and 13C-NMR data of compound 10 and cyclo(L-prolinyl-L-phenylalanine)	26
Table S10: ¹ H and 13C-NMR data of compound 11 and cyclo(L-prolinyl-L-valine)	26
Table S11: Cytotoxic activity of compounds 1-11	26
S1. Sea Cucumber Identification	27
S2. Aspegillus <i>fumigatus</i> M580 isolation and characterization: Method and Data	27
Colony morphological characteristics of the strain M580 grown on PDA medium for 10	
days at 28°C	27
S3. Fungal identification	28
S4. M580 strain's 18S rRNA gene sequence comparison results on GenBank	28
S5. The 18S rRNA gene sequence of strain M580 is displayed on GenBank	29
S6. Physical properties of compounds 2-10	29
References	30
Figure S1: ¹ H-NMR spectrum of compound 1	6
Figure S2: ¹³ C-NMR spectrum of compound 1	6
Figure S3: HSQC spectrum of compound 1	7
Figure S4: HMBC spectrum of compound 1	7
Figure S5: COSY spectrum of compound 1	
Figure S6: ¹ H-NMR spectrum of compound 2	

Figure S7: ¹³ C-NMR spectrum of compound 2
Figure S8: ¹ H-NMR spectrum of compound 39
Figure S9: ¹³ C-NMR spectrum of compound 3
Figure S10: ¹ H-NMR spectrum of compound 410
Figure S11: ¹³ C-NMR spectrum of compound 4
Figure S12: ¹ H-NMR spectrum of compound 5
Figure S13: ¹³ C-NMR spectrum of compound 5
Figure S14: ¹ H-NMR spectrum of compound 6
Figure S15: ¹³ C-NMR spectrum of compound 6
Figure S16: ¹ H-NMR spectrum of compound 7
Figure S17: ¹³ C-NMR spectrum of compound 7
Figure S18: ¹ H-NMR spectrum of compound 814
Figure S19: ¹³ C-NMR spectrum of compound 8
Figure S20: ¹ H-NMR spectrum of compound 915
Figure S21: ¹³ C-NMR spectrum of compound 9
Figure S22: ¹ H-NMR spectrum of compound 10
Figure S23: ¹³ C-NMR spectrum of compound 10
Figure S24: ¹ H-NMR spectrum of compound 1117
Figure S25: ¹³ C-NMR spectrum of compound 11
Figure S26: <i>α</i> -Glucosidase inhibitory activity of compounds 1–1018
Figure S27: Photos of collected sea cucumber
Figure S28: Figure: Popular bond types of the collected sea cucumber (10X)
Figure S29: Bowls and ellipsoids bonds of collected sea cucumber (20X)
Figure S30: Figure: Ellipsoids, Rosettes and Rods bonds of collected sea cucumber (20X)21
Figure S31: The results of SciFinder searching for new compound
Table S1: ¹ H and ¹³ C-NMR data of compound 2 and Fumiquinazoline D
Table S2: ¹ H and ¹³ C-NMR data of compound 3 and Fumiquinazoline C 22
Table S3: ¹ H and ¹³ C-NMR data of compound 4 and Fumiquinazoline J 23
Table S4: ¹ H and ¹³ C-NMR data of compound 5 and bisdethiobis(methylthio)gliotoxin
Table S5: ¹ H and ¹³ C-NMR data of compound 6 and cyclo(L-prolyl-L-tryptophane)
Table S6: ¹ H and ¹³ C-NMR data of compound 7 and tryprostatin B
Table S7: ¹ H and 13C-NMR data of compound 8 and 12,13-dihydroxy-fumitremorgin C
Table S8: ¹ H and ¹³ C-NMR data of compound 9 and 6-methoxyspirotryprostatin B
Table S9: ¹ H and ¹³ C-NMR data of compound 10 and cyclo(L-prolinyl-L-phenylalanine)26

Table S10. ¹ H and 13C-NMR data of compound 11 and cyclo(L-prolinyl-L-valine)	26
Table S11:Cytotoxic activity of compounds 1-11	26
S1. Sea cucumber Identification	27
S2. Aspegillus fumigatus M580 Isolation and Characterization: Method and Data	27
Colony morphological characteristics of the strain M580 grown on PDA medium for 10 da	ays at
28°C	27
S3. Fungal Identification	28
S4. M580 strain's 18S rRNA gene sequence comparison results on GenBank	28
S5. The 18S rRNA gene sequence of strain M580 is displayed on GenBank	29
S6. Physical properties of compounds 2-10	29
References	30
Figure S1: ¹ H-NMR spectrum of compound 1	6
Figure S2: ¹³ C-NMR spectrum of compound 1	6
Figure S3: HSQC spectrum of compound 1	7
Figure S4: HMBC spectrum of compound 1	7
Figure S5: COSY spectrum of compound 1	8
Figure S6: ¹ H-NMR spectrum of compound 2	8
Figure S7: ¹³ C-NMR spectrum of compound 2	9
Figure S8: ¹ H-NMR spectrum of compound 3	9
Figure S9: ¹³ C-NMR spectrum of compound 3	10
Figure S10: ¹ H-NMR spectrum of compound 4	10
Figure S11: ¹³ C-NMR spectrum of compound 4	11
Figure S12: ¹ H-NMR spectrum of compound 5	11
Figure S13: ¹³ C-NMR spectrum of compound 5	12
Figure S14: ¹ H-NMR spectrum of compound 6	12
Figure S15: ¹³ C-NMR spectrum of compound 6	13
Figure S16: ¹ H-NMR spectrum of compound 7	13
Figure S17: ¹³ C-NMR spectrum of compound 7	14
Figure S18: ¹ H-NMR spectrum of compound 8	14
Figure S19: ¹³ C-NMR spectrum of compound 8	15
Figure S20: ¹ H-NMR spectrum of compound 9	15
Figure S21: ¹³ C-NMR spectrum of compound 9	16
Figure S22: ¹ H-NMR spectrum of compound 10	16

Figure S23: ¹³ C-NMR spectrum of compound 10
Figure S24: ¹ H-NMR spectrum of compound 11
Figure S25: ¹³ C-NMR spectrum of compound 11
Figure S26: α -Glucosidase inhibitory activity of compounds 1–10
Figure S27: Photos of collected sea cucumber
Figure S28: Figure: Popular bond types of the collected sea cucumber (10X) 20
Figure S29: Bowls and ellipsoids bonds of collected sea cucumber (20X)
Figure S30: Figure: Ellipsoids, Rosettes and Rods bonds of collected sea cucumber (20X) 21
Figure S31: The results of SciFinder searching for new compound
Table S1: ¹ H and ¹³ C-NMR data of compound 2 and Fumiquinazoline D
Table S2: ¹ H and ¹³ C-NMR data of compound 3 and Fumiquinazoline C 22
Table S3: ¹ H and ¹³ C-NMR data of compound 4 and Fumiquinazoline J 23
Table S4: ¹ H and ¹³ C-NMR data of compound 5 and bisdethiobis(methylthio)gliotoxin
Table S5: ¹ H and ¹³ C-NMR data of compound 6 and cyclo(L-prolyl-L-tryptophane)
Table S6: ¹ H and ¹³ C-NMR data of compound 7 and tryprostatin B
Table S7: ¹ H and 13C-NMR data of compound 8 and 12,13-dihydroxy-fumitremorgin C 25
Table S8: ¹ H and ¹³ C-NMR data of compound 9 and 6-methoxyspirotryprostatin B
Table S9: ¹ H and ¹³ C-NMR data of compound 10 and cyclo(L-prolinyl-L-phenylalanine)
Table S10. ¹ H and 13C-NMR data of compound 11 and cyclo(L-prolinyl-L-valine) 26
Table S11:Cytotoxic activity of compounds 1-11 26
S1. Sea cucumber Identification
S2. Aspegillus fumigatus M580 Isolation and Characterization: Method and Data27
Colony morphological characteristics of the strain M580 grown on PDA medium for 10 days at
28°C
S3. Fungal Identification
S4. M580 strain's 18S rRNA gene sequence comparison results on GenBank
S5. The 18S rRNA gene sequence of strain M580 is displayed on GenBank
S6. Physical properties of compounds 2-10
References

© 2022 ACG Publications. All rights reserved.

Figure S4: HMBC spectrum of compound 1

Figure S6: ¹H-NMR spectrum of compound 2

Figure S8: ¹H-NMR spectrum of compound 3

Figure S10: ¹H-NMR spectrum of compound 4

Figure S12: ¹H-NMR spectrum of compound 5

Figure S14: ¹H-NMR spectrum of compound 6

Figure S16: ¹H-NMR spectrum of compound 7

Figure S18: ¹H-NMR spectrum of compound 8

CML4E3-CDCl3-Cl3CPD

Figure S20: ¹H-NMR spectrum of compound 9

Figure S22: ¹H-NMR spectrum of compound 10

Figure S24: ¹H-NMR spectrum of compound 11

Figure S25: ¹³C-NMR spectrum of compound 11

Figure S26: α-Glucosidase inhibitory activity of compounds 1–10.

Colochirus quadrangularis Troschel, 1846 identification: Method and Data

Figure S27: Photos of collected sea cucumber

The identification of collected sea cucumber was done base on the analysis of its spicule morphology and skeleton structure followed published methods (Conand 1990; Hooper and Van Soest 2002). Briefly, thin slides at various body parts of the sea cucumber were prepared. The slides were then soak with sodium hypochlorite for 10-15 minutes to remove all contained tissues. The spicule and skeleton structure was observed under microscope (Figure S28-S30).

Figure S28: Figure: Popular bond types of the collected sea cucumber (10X)

Figure S29: Bowls and ellipsoids bonds of collected sea cucumber (20X)

Figure S30: Figure: Ellipsoids, Rosettes and Rods bonds of collected sea cucumber (20X)

As Drawn (0)		eferences 🗕 🛛 🗛 React	ons 👻 📜 Suppliers 🗸		上 📔 🌲 Save And A	Alerts
Substructure (1)	Filtering:	Similarity: 95-98 🗙	Number of Components: 1 🗙		Clear All	l Filter
Similarity (29K)	1					99
Chemscape Analysis	2640210	0-38-2	Key Physical Properties	Value	Condition	
Visually explore structure		, III	Molecular Weight	353.32		
similarity with a powerful new tool.			Boiling Point (Predicted)	648.7±55.0 °C	Press: 760 Torr	
Learn more about Chemscape.		no to a	Density (Predicted)	1.58±0.1 g/cm ³	Temp: 20 °C; Press: 760 Torr	
Create Chemscape Analysis	At	osolute stereochemistry shown	pKa (Predicted)	12.49±0.70	Most Acidic Temp: 25 °C	
Filter Behavior Filter by Exclude	1 Reference	e Reactions F 0 Suppli				
 Similarity 	2					98
95-98 (2)	863507-	77-1	Key Physical Properties	Value	Condition	
90-94 (6)		H A A A A A A A A A A A A A A A A A A A	Molecular Weight	339.30		
80-84 (117)		J.	Boiling Point (Predicted)	688.9±55.0 °C	Press: 760 Torr	
75-79 (172)	ing the second sec		Density (Predicted)	1.70±0.1 g/cm ³	Temp: 20 °C; Press: 760 Torr	
View All	At	osolute stereochemistry shown	pKa (Predicted)	9.58±0.40	Most Acidic Temp: 25 °C	
Commercial Availability Available (1)	β-D-Gluco indole-3-c	⁸ pyranose, 1-(6-hydroxy-1 <i>H</i> arboxylate)	Spectra			
Not Available (1)	7 Reference	A 0 Reactions Suppli	ers			

Figure S31: The results of SciFinder searching for new compound

Position	2		Fumiquinazoline D [1]
-	$\delta_{H^{a,b}}$ mult. (J in Hz)	δc ^{a,c}	$\delta_{c}^{\#}$
1	-	172.4	172.4
3	-	70.9	70.9
4	-	152.3	152.3
6	-	146.4	146.4
7	7.68 d (8.5)	127.8	127.8
8	7.76 t (8.5)	134.9	134.9
9	7.49 t (8.5)	127.7	127.7
10	8.19 d (8.5)	126.9	126.9
11	-	120.4	120.5
12	-	161.0	161.0
14	5.80 m	52.8	52.8
15	2.30 d (15.5)/3.45 d (15.5)	43.5	43.5
16	2.10 s	19.0	19.0
17	-	84.0	84.1
18	5.62 s	85.6	85.7
20	4.05 q (6.5)	59.2	59.2
21	-	171.5	171.5
23	-	137.6	137.6
24	7.45 d (8.0)	115.4	115.5
25	7.24 t (8.0)	130.0	130.1
26	7.05 t (8.0)	125.8	125.8
27	7.45 d (8.0)	124.3	124.3
28	-	137.6	137.6
29	1.12 d (6.5)	17.5	17.5

Table S1:¹H and ¹³C-NMR data of compound 2 and Fumiquinazoline D

^{a)} recorded in CDCl₃, ^{b)} 500 MHz, ^{c)}125 MHz, ^{#)} CDCl₃

Table S2: ¹ H and	¹³ C-NMR	data of con	npound 3 ar	nd Fumiq	uinazoline C
------------------------------	---------------------	-------------	---------------	----------	--------------

Position	3		Fumiquinazoline C [1]
	$\delta_{\rm H}{}^{\rm a,b}$ mult. (J in Hz)	$\delta_{C}{}^{a,c}$	$\delta_{c}^{\#}$
1	-	170.9	170.8
3	-	84.2	84.2
4	-	150.4	150.4
6	-	146.3	146.3
7	7.80 d (8.0)	128.5	128.4
8	7.85 t (8.0)	135.0	134.9
9	7.62 t (8.0)	128.6	128.6
10	8.36 d (8.0)	127.0	127.0
11	-	121.4	121.4
12	-	159.5	159.5
14	5.72 d (7.5)	51.4	51.5
15	2.13 d (15.5)/2.97 dd (15.5, 7.5)	31.4	31.5
16	2.06 s	24.6	24.6
17	-	87.2	87.2
18	5.34 s	87.1	87.0
20	3.70 d (7.0)	58.6	58.6
21	-	170.7	170.0
23	-	135.8	135.8
24	7.45 d (8.0)	115.5	115.4
25	7.33 t (8.0)	130.3	130.2
26	7.20 t (8.0)	126.2	126.2
27	7.35 d (8.0)	124.9	124.8
28	-	138.4	138.3
29	1.07 d (7.0)	18.7	18.7

Position	4		Fumiquinazoline J [2]
	$\delta_{H}{}^{a,b}$ mult. (J in Hz)	$\delta_{\rm C}{}^{\rm a,c}$	$\delta_{c}^{\#}$
1		170.8	170.8
3		54.9	54.8
4		153.3	153.3
6		147.1	147.0
7	7.61 d (8.0)	127.6	127.6
8	7.70 d (8.0)	134.6	134.4
9	7.45 t (8.0)	172.4	172.4
10	8.26 d (8.0)	126.9	126.9
11		120.8	120.7
12		160.3	160.3
14	6.07 br s	54.6	54.5
15	3.37 dd (17.5, 4.5)	26.0	25.9
	3.52 dd (17.5, 2.5)		
16	2.26 s	18.1	18.0
17		107.6	107.5
18		132.5	132.4
20		134.7	134.6
21	7.31 d (8.0)	111.4	111.3
22	7.17 t (8.0)	123.5	123.5
23	7.07 t (8.0)	120.6	120.6
24	7.37 d (8.0)	118.4	118.4
25		127.9	127.8

Table S3: ¹H and ¹³C-NMR data of compound 4 and Fumiquinazoline J

^{a)} recorded in CDCl₃, ^{b)} 500 MHz, ^{c)}125 MHz, ^{#)}recoded in

Position	5		bisdethiobis(methylthio)gliotoxin [1]
	$\delta_{H}^{a,b}$ mult. (J in Hz)	$\delta_{C}{}^{a,c}$	$\delta_c^{\#}$
1		166.0	165.9
3		72.2	71.9
4		166.9	166.8
5a	4.92 (m)	69.6	69.6
6	4.92 m	74.4	74.4
7	5.88 d (9.5)	123.2	123.1
8	5.72 dd (9.5, 1.0)	129.9	130.1
9	5.92 d (1.0)	120.0	120.0
9a		131.7	131.6
10	2.95 d (16.0)	38.9	38.9
	3.06 d (16.0)		
11		71.6	71.5
12	2.24 s	15.1	14.6
13	3.14 s	28.6	28.7
14	2.26 s	13.6	13.7
15	3.88 d (12.0)	63.6	63.6
	4.36 d (12.0)		

Position	6		cyclo(L-prolyl-L-tryptophane) [3]
	$\delta_{H}{}^{a,b}$ mult. (J in Hz)	δc ^{a,c}	$\delta_{c}^{\#}$
1	8.60 s	-	-
2	-	165.6	168.23
3	4.35 dd (4.0, 10.5)	54.8	59.18
5	-	169.5	171.89
6	4.05 t (7.5)	59.2	59.51
7	1.98 m	28.3	29.74
	2.30 m		
8	1.88 m	22.6	22.26
	1.94 m		
9	3.55 m	45.4	46.04
	3.63 m		
10	2.99 dd (10.5, 15.0)	28.3	31.19
	3.72 dd (4.0, 15.0)		
11	-	109.8	109.31
12	-	126.8	128.66
13	7.58 d (8.0)	118.5	119.55
14	7.13 t (8.0)	119.9	120.04
15	7.21 t (8.0)	122.6	122.73
16	7.38 d (8.0)	111.6	112.37
17	-	136.7	138.01
18	5.99 s	-	-
19	7.08 s	123.5	126.21

 Table S5: ¹H and ¹³C-NMR data of compound 6 and cyclo(L-prolyl-L-tryptophane)

^{a)} recorded in CDCl₃, ^{b)} 500 MHz, ^{c)}125 MHz, ^{#)}CD₃OD

Table S6: ¹ H and ¹³ C-NMR data of compound 7 and tryprostatin	ιB
--	----

	*	51	
Position _	7		Tryprostatin B [4]
_	$\delta_{\rm H}{}^{\rm a,b}$ mult. (<i>J</i> in Hz)	$\delta_{\rm C}{}^{\rm a,c}$	$\delta_{\rm C}^{\#}$
1(NH)	8.02 br s		-
2	-	136.4	136.4
3	-	104.7	104.6
3a	-	128.1	128.0
4	7.47 d (7.5)	117.8	117.7
5	7.09 t (7.5)	119.9	119.9
6	7.16 t (7.5)	121.9	121.9
7	7.30 d (7.5)	110.8	110.8
7a	-	135.5	135.4
8	2.99 dd (10.5, 15.0)/3.72 dd (4.0, 15.0)	25.7	25.6
9	4.36 dd (1.5, 11.0)	54.7	54.6
10 (NH)	5.62 s	-	-
11	-	169.4	169.4
12	4.05 t (7.5)	59.3	59.3
13	2.02 m	28.4	28.3
	2.33 m		
14	1.91 m	22.7	22.6
	2.03 m		
15	3.60 m	45.4	45.4
	3.68m		
17	-	165.8	165.8
18	3.49 m	25.2	25.1
19	5.30 t (8.0)	119.8	119.7
20	-	135.5	135.5
21	1.78 s	25.7	25.7
22	1.75 s	18.0	18.0

Position	8		12,13-Dihydroxy-fumitremorgin C [5]
	$\delta_{\rm H}{}^{\rm a,b}$ mult. (J in Hz)	δc ^{a,c}	$\delta_{c}^{\#}$
2	-	130.2	130.3
3	5.87 d (9.5)	58.8	58.8
5	-	166.2	166.3
6	4.42 dd (2.0, 9.5)	50.2	50.2
7	2.09 m/2.48 m	29.2	29.2
8	1.95 m/2.10 m	22.5	22.6
9	3.64 m	45.3	45.3
11	-	171.0	171.1
12	-	83.1	83.1
13	5.74 m	68.7	68.8
14	-	105.4	105.6
15	-	120.7	120.9
16	6.79 d (9.5)	121.2	121.4
17	7.79 d (9.5)	109.8	109.9
18	-	156.7	156.9
19	6.83 s	95.1	95.3
20	-	137.6	137.7
21	1.99 m	124.0	124.1
22	-	134.6	134.6
23	4.79 d (9.5)	25.7	25.7
24	1.66 m	18.3	18.3
25	3.82 s	55.8	55.8

Table S7: ¹ H and 13C-NMR data of compound 8 and 12,13-dihydroxy-fumitremorg	n	С
---	---	---

^{a)} recorded in CDCl₃, ^{b)} 500 MHz, ^{c)}125 MHz, ^{#)} CDCl₃

Table S8: ¹ H and ¹³ C-NMR data of compound 9 and 6-methoxyspirotryprostating	ı B
---	-----

Position	9	9 6-methoxyspirotrypros	
	$\delta_{\rm H}{}^{\rm a,b}$ mult. (J in Hz)	δc ^{a,c}	$\delta_{c}^{\#}$
1(NH)	8.16 s	-	-
2	-	178.9	179.0
3	-	61.4	61.4
3a	-	118.9	118.8
4	6.95 d (8.5)	128.5	128.4
5	6.51 dd (8.5, 2.0)	107.2	107.1
6	-	160.7	160.6
7	6.45 d (2.0)	97.2	97.1
7a	-	141.7	141.7
8	5.75 s	116.9	116.9
9	-	138.0	137.9
11	-	162.5	162.5
12	4.33 dd (11.0, 5.5)	61.6	61.5
13	1.99 m/2.48 m	29.3	29.2
14	1.99 m/2.11 m	22.1	22.1
15	3.58 m/3.83 m	44.9	44.8
17	-	155.2	155.1
18	5.38 d (9.0)	64.1	64.0
19	5.20 d (9.0)	120.4	120.4
20	-	138.3	138.3
21	1.59 s	25.4	25.4
22	1.30 s	18.3	18.3
6-OCH ₃	3.80 s	55.5	55.5

Position	10		cyclo(L-prolinyl-L-phenylalanine) [7]
	$\delta_{H}^{a,b}$ mult. (J in Hz)	δc ^{a,c}	$\delta_{c}^{\#}$
1	-	169.5	169.4
3	3.55 m/3.64 m	45.4	45.2
4	1.88 m/1.97 m	22.5	22.2
5	1.99 m/2.31 m	28.3	28.3
6	4.29 dd (9.5, 3.0)	59.1	58.9
7	-	165.1	164.9
9	4.27 d (3.0)	56.3	56.1
10	2.84 dd (14.5, 10.0)/3.54 m	36.8	36.6
1'	_	135.9	135.8
2'	7.33 m	129.1	128.9
3'	7.24 m	127.5	127.3
4'	7.28 m	129.2	129.1

Table S9: ¹H and ¹³C-NMR data of compound **10** and cyclo(L-prolinyl-L-phenylalanine)

^{a)} recorded in CDCl₃, ^{b)} 500 MHz, ^{c)}125 MHz, ^{#)} CDCl₃

Table S10. ¹H and 13C-NMR data of compound 11 and cyclo(L-prolinyl-L-valine)

Position	11		cyclo(L-prolinyl-L-valine) [8]	
	$\delta_{H}^{a,b}$ mult. (J in Hz)	$\delta_{\rm C}{}^{\rm a,c}$	$\delta_{c}^{\#}$	
1	-	171.1	170.7	
3	3.51 m/3.60 m	45.5	45.9	
4	1.90 m/2.09 m	22.7	23.1	
5	2.13 m/2.34 m	28.0	28.5	
6	4.13 t (8.5)	58.9	59.4	
7	-	166.3	166.6	
9	4.02 d (9.0)	53.5	53.8	
10	1.56 m/2.02 m	38.5	39.0	
11	1.85 m	24.5	25.1	
12	0.95 d (6.5)	23.2	23.7	
13	1.00 d (6.5)	21.3	21.6	

^{a)} recorded in CDCl₃, ^{b)} 500 MHz, ^{c)}125 MHz, ^{#)} CDCl₃

Compounds	IC50 (µ	ıg/mL)
	Huh-7	НТ-29
2	70.9±2.1	60.9±6.2
3	66.2±3.3	61.7±2.4
4	9.7±0.9	10.3±0.9
Ellipticine	0.4 ± 0.1	$0.4 {\pm}~ 0.1$

 Table S11:Cytotoxic activity of compounds 1-11

Compounds 1, 4-10 did not showed cytotoxic activity ($IC_{50} > 100 (\mu g/mL)$). Ellipticine was used as a positive control. Data are presented as mean \pm SD of experiments performed in triplicate.

S1. Sea cucumber Identification

The obtained spicule morphology and skeleton structure were compared with reference data (Mark O'Loughlin 2016) revealed that the collected sea cucumber belongs to *Colochirus quadrangularis* Troschel, 1846, with detail classification as follow:

Phylum: Echinodermata

Class: Holothuroidea

Order: Dendrochirotida

Family: Cucumariidae

Genus: Colochirus

Species: Colochirus quadrangularis Troschel, 1846

Reference source:

O'Loughlin, P.M., Harding, C. & Paulay, G., 2016. The sea cucumbers of Camden Sound in northwest Australia, including four new species (Echinodermata: Holothuroidea). Memoirs of Museum Victoria 75: 7-52. <u>http://doi.org/10.24199/j.mmv.2016.75.02</u>.

S2. Aspegillus fumigatus M580 Isolation and Characterization: Method and Data

0.5 g of *Colochirus quadrangularis* Troschel, 1846 was suspended in 4.5 ml of sterile distilled water, homogenized by vortexing for 1 min, and the suspension was treated at 60 °C for 6 min. Next, 0.5 ml of the heat-treated suspension was used for serial dilution in sterile distilled water to 10^{-3} . 50 µl of the final dilution were spread on the petri dishes containing solid media, PDA - potato dextrose agar (30 g/L potato extract, 20g/L dextrose 5g/L soluble starch, 30g/L instant ocean, 15g/L agar). Plates were incubated at 28 °C for 7 days. Single colonies of fungi were transferred onto new petri dishes of PDA medium for further purification steps (Figure).

Colony morphological characteristics of the strain M580 grown on PDA medium for 10 days at 28°C

S3. Fungal Identification

Genomic DNA of strain M580 was extracted by Wizard® Genomic DNA Purification Kit (Promega, USA). Sequences of 18S rRNA was used for taxonomical identification of the fungal strain. Gene amplifications were performed in a 25.0 μ l mixture containing 10 μ l of sdH₂O, 12.5 μ l of 2× PCR Master mix (Thermo Scientific), 1.0 μ l of 0.05 mM for both primers NS3F (5'-GCAAGTCTGGTGCCAGCAGCC-3') and NS8R (5'-TCCGCAGGTTCACCTACGGA-3') and 0.5 μ l of genomic DNA. The thermocycling was performed on MJ Thermal cycler (Bio - Rad), with a preheating step at 94 °C for 3 min, followed by 35 cycles of denaturation at 94oC for 1 min, annealing at 60°C for 30s and extension at 72 °C for 45s before a final extension of 72 °C for 10 minus. The PCR product size was about 1300 bp. PCR products were purified by DNA purification kit (Invitrogen) and sequenced by DNA Analyzer (ABI PRISM 3100, Applied Bioscience). Gene sequences were handled by BioEdit v.2.7.5. and compared with fungal 18S rDNA sequences available in GenBank database using NBCI Blast program. The alignment was manually verified and adjusted prior to the reconstruction of a phylogenetic neighbour-joining tree by using the MEGA program version 4.1. The results showed that strain M580 belonged to species *Aspegillus fumigatus* (Table S1). Strain M580 was registered with GenBank code: **MW015802**.

Descriptions Graphic Summary Alignments Taxonomy	Sequences pr	oducing significant a	lignments		Download 🗡	Manage Columns	 Show
	Descriptions	Graphic Summary	Alignments	Taxonomy			

S4. M580 strain's 18S rRN	A gene sequence co	mparison result	ts on GenBank
---------------------------	--------------------	-----------------	---------------

Sequences producing significant alignments Download × Manage Columns × Show 100 • @									
Select all 100 sequences selected GenBank Graphics Distance tree of results									
		Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession	
	~	Aspergillus fumigatus strain TMS-26 18S ribosomal RNA gene, partial sequence	2130	2130	98%	0.0	100.00%	KJ746594.1	
	✓	Aspergillus fumigatus strain YuZhu2 18S ribosomal RNA gene, partial sequence	2128	2128	98%	0.0	100.00%	KU512836.1	
	✓	Aspergillus fumigatus ATCC 13073 gene for 18S ribosomal RNA, partial sequence	2124	2124	98%	0.0	99.91%	LC485158.1	
	~	Aspergillus fumigatus strain UPSC 1771 18S ribosomal RNA gene, partial sequence	2124	2124	98%	0.0	99.91%	AF548061.1	
	~	Aspergillus fumigatus gene for 18S rRNA, partial sequence	2124	2124	98%	0.0	99.91%	AB008401.1	
	~	Aspergillus fumigatus small subunit ribosomal RNA	2124	2124	98%	0.0	99.91%	M60300.1	
	✓	Aspergillus fumigatus small subunit ribosomal RNA	2124	2124	98%	0.0	99.91%	M55626.1	
	~	Aspergillus fumigatus strain MJ-X6 18S ribosomal RNA gene, complete sequence	2122	2122	98%	0.0	99.91%	HM590663.1	
	~	Aspergillus sp. ISSFT-021 18S ribosomal RNA gene, partial sequence	2121	2121	97%	0.0	100.00%	KT832787.1	
	✓	Aspergillus fumigatus strain CY018 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene	<u>ne</u> 2119	2119	98%	0.0	99.83%	KJ809565.1	
	~	Aspergillus fumigatus strain WL002 18S ribosomal RNA gene, partial sequence	2119	2119	98%	0.0	99.83%	KJ528402.1	
		Asperoillus fumicatus strain ES160-18S ribosomal RNA gene, partial sequence	2119	2119	98%	0.0	99.83%	FJ840490.1	

S5. The 18S rRNA gene sequence of strain M580 is displayed on GenBank

GenBank: MW015802.1 FASTA Graphics

<u>Go to:</u> 🕑

LOCUS	MW015802 1175 bp DNA linear PLN 23-SEP-2020
DEFINITION	Aspergillus fumigatus isolate M580 small subunit ribosomal RNA
	gene, partial sequence.
ACCESSION	MW015802
VERSION	MW015802.1
KEYWORDS	
SOURCE	Aspergillus fumigatus
ORGANISM	<u>Aspergillus fumigatus</u>
	Eukaryota; Fungi; Dikarya; Ascomycota; Pezizomycotina;
	Eurotiomycetes; Eurotiomycetidae; Eurotiales; Aspergillaceae;
	Aspergillus; Aspergillus subgen. Fumigati.
REFERENCE	1 (bases 1 to 1175)
AUTHORS	Tuan,C.D., Khai,N.V., Hung,N.V., Anh,N.M., Minh,L.T., Huong,D.T.,
	Cuong,P.V. and Lien,H.T.
TITLE	18s rRNA of fungi
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 1175)
AUTHORS	Tuan,C.D., Khai,N.V., Hung,N.V., Anh,N.M., Minh,L.T., Huong,D.T.,
	Cuong,P.V. and Lien,H.T.
TITLE	Direct Submission
JOURNAL	Submitted (18-SEP-2020) biotechnology, Institute of marine
	biochemistry, hoang quoc viet, ha noi, 0243 084, Viet Nam
COMMENT	##Assembly-Data-START##
	Sequencing Technology :: Sanger dideoxy sequencing
	##Assembly-Data-END##
FEATURES	Location/Qualifiers

S6. Physical properties of compounds 2-10

Fumiquinazoline D (2): Pale yellow amorphous powder; $[\alpha]_D^{25}$ +62.5 (*c* 0.1, CHCl₃); C₂₄H₂₁N₅O₄; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S1.

Fumiquinazoline C (3): Pale yellow amorphous powder; $[\alpha]_D^{25}$ -150.0 (*c* 0.1, CHCl₃); C₂₄H₂₁N₅O₄; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S2.

Fumiquinazoline J (4): Pale yellow amorphous powder; $[\alpha]_D^{25}$ -72.4 (*c* 0.1, CHCl₃); C₂₁H₁₆N₄O₂; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S3.

Bisdethiobis(methylthio)gliotoxin (5): White amorphous powder; $[\alpha]_D^{25}$ -42.0 (*c* 0.1, CHCl₃); $C_{15}H_{20}N_2O_4S_2$; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S4.

Cyclo(*L-Pro-L-Trp*) (**6**): Pale yellow amorphous powder; $[\alpha]_D^{25}$ –58.3 (*c* 0.1, CHCl₃); C₁₆H₁₇N₃O₂; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S5.

Tryprostatin B (7): Pale yellow amorphous powder; $[\alpha]_D^{25}$ –55.9 (*c* 0.1, CHCl₃); C₂₁H₂₅N₃O₂; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S6.

12,13-dihydroxy-fumitremorgin C (8): Pale yellow amorphous powder; $[\alpha]_D^{25}$ +20.5 (*c* 0.1, CHCl₃); C₂₂H₂₅N₃O₅; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S7.

6-Methoxyspirotryprostatin B (9): Pale yellow amorphous powder; $[\alpha]_D^{25}$ -37.0 (*c* 0.1, CHCl₃); C₂₂H₂₃N₃O₄; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S8.

Cyclo(*D-Pro-D-Phe*) (10): White amorphous powder; $[\alpha]_D^{25}$ +75.0 (*c* 0.1, CHCl₃); C₁₄H₁₆N₂O₂; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S9.

Cyclo(*S-Pro-S-Leu*) (11): White amorphous powder; $[\alpha]_D^{25}$ +75.0 (*c* 0.1, CHCl₃); C₁₄H₁₆N₂O₂; ¹H NMR (CDCl₃) and ¹³C NMR (CDCl₃) data: see Table S10.

References

- [1] S. S. Afiyatullov, A. I. Kalinovskii, M. V. Pivkin, P. S. Dmitrenok, and T. A. Kuznetsova (2005). Alkaloids from the marine isolate of the fungus *Aspergillus fumigatus*, *Chem. Nat. Comp.* **41**, 236-238.
- [2] R. Liu, H. Li, J. Yang, and Z. An (2018). Quinazolinones isolated from *Aspergillus* sp., an endophytic fungus of *Astragalus membranaceus*, *Chem. Nat. Compd.* **54**, 808-810.
- [3] V. Ivanova, U. Graefe, R. Schlegel, B. Schlegel, A. Gusterova, M. Kolarova, and K. Aleksieva (2003). Isolation and structure elucidation of tyramine and indole alkaloids from antarctic strain *Microbispora aerata* IMBAS-11A, *Biotechnol. Biotechnol. Equip.* 17, 128-133.
- [4] C. B. Cui, H. Kakeya, and H. Osada (1996). Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by *Aspergillus fumigatus*. II. Physico-chemical properties and structures, J. *Antibiot.* 49, 534-540.
- [5] W.-R. Abraham and H.-A. Arfmann (1990). 12,13-Dihydroxy-fumitremorgin C from Aspergillus fumigatus, *Phytochemistry* **29**, 1025-1026.
- [6] M. Zhang, W.-L. Wang, Y.-C. Fang, T.-J. Zhu, Q.-Q. Gu, and W.-M. Zhu (2008). Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus *Aspergillus sydowi*, J. Nat. Prod. 71, 985-989
- [7] F. Fdhila, V. Vázquez, J. L. Sánchez, and R. Riguera (2003). Diketopiperazines: antibiotics active against *Vibrio anguillarum* isolated from marine bacteria associated with cultures of *Pecten maximus*, J. Nat. Prod. 66, 1299-1301.
- [8] M. S. C. Pedras, Y. Yu, J. Liu, and Y. A. Tandron-Moya (2005). Metabolites produced by the phytopathogenic fungus *Rhizoctonia solani*: isolation, chemical structure determination, syntheses and bioactivity, *Z. Naturforsch.* 60c, 717-722.