# **Supporting Information**

## Rec. Nat. Prod. 16:6 (2022) 645-650

# **Degranulation Inhibitors from Flowers of** Coreopsis grandiflora

# Takeru Koga<sup>1</sup>, Nanako Shiki<sup>2</sup>, Hideyuki Ito<sup>3</sup>,

Yuji Iwaoka <sup>3</sup> and Akihiro Tai <sup>2,4\*</sup>

<sup>1</sup> Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan

<sup>2</sup> Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatsuka-cho, Shobara, Hiroshima 727-0023, Japan

<sup>3</sup> Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan

<sup>4</sup> Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan

| Table of Contents                                                                                                                  | Page |
|------------------------------------------------------------------------------------------------------------------------------------|------|
| Experimental                                                                                                                       | 2    |
| Results and discussion                                                                                                             | 6    |
| Figure S1: Inhibitory effects of extract of petals of Coreopsis grandiflora on antigen-                                            | 6    |
| induced degranulation in RBL-2H3 cells.                                                                                            |      |
| <b>Table S1:</b> NMR data of compound <b>1</b> (600 MHz for <sup>1</sup> H) in CD <sub>3</sub> OD.                                 | 7    |
| Figure S2: <sup>1</sup> H-NMR spectrum of compound 1 (lanceoletin).                                                                | 7    |
| <b>Table S2:</b> NMR data of compound <b>2</b> (600 MHz for $^{1}$ H) in CD <sub>3</sub> OD.                                       | 8    |
| Figure S3: <sup>1</sup> H-NMR spectrum of compound 2 (leptosidin).                                                                 | 8    |
| <b>Table S3:</b> NMR data of the compound isolated from flower parts of <i>Coreopsis grandiflora</i>                               | 9    |
| (600 MHz for <sup>1</sup> H and 150 MHz for <sup>13</sup> C) in CD <sub>3</sub> OD.                                                |      |
| Figure S4: <sup>1</sup> H-NMR spectrum of leptosidin isolated from flower parts of <i>Coreopsis</i>                                | 9    |
| grandiflora.                                                                                                                       |      |
| Figure S5: <sup>13</sup> C-NMR spectrum of leptosidin isolated from flower parts of <i>Coreopsis</i>                               | 10   |
| grandiflora.                                                                                                                       |      |
| Figure S6: HSQC spectrum of leptosidin isolated from flower parts of <i>Coreopsis</i>                                              | 10   |
| grandiflora.                                                                                                                       |      |
| <b>Table S4:</b> NMR data of compound <b>3</b> (600 MHz for <sup>1</sup> H and 150 MHz for <sup>13</sup> C) in CD <sub>3</sub> OD. | 11   |
| Figure S7: <sup>1</sup> H-NMR spectrum of compound 3 (okanin).                                                                     | 11   |
| Figure S8: <sup>13</sup> C-NMR spectrum of compound <b>3</b> (okanin).                                                             | 12   |
| Figure S9: HSQC spectrum of compound 3 (okanin).                                                                                   | 12   |
| Figure S10: HMBC spectrum of compound 3 (okanin).                                                                                  | 13   |
| <b>Table S5:</b> NMR data of compound 4 (600 MHz for ${}^{1}$ H and 150 MHz for ${}^{13}$ C) in CD <sub>3</sub> OD.                | 14   |
| <b>Figure S11:</b> <sup>1</sup> H-NMR spectrum of compound <b>4</b> (4-methoxylanceoletin).                                        | 14   |
| Figure S12: <sup>13</sup> C-NMR spectrum of compound 4 (4-methoxylanceoletin).                                                     | 15   |
| Figure S13: HSQC spectrum of compound 4 (4-methoxylanceoletin).                                                                    | 15   |
| Figure S14: HMBC spectrum of compound 4 (4-methoxylanceoletin).                                                                    | 16   |
| References                                                                                                                         | 17   |

#### Experimental

#### General

Rat basophilic leukaemia (RBL-2H3) cells were obtained from JCRB Cell Bank (Osaka, Japan) and maintained under the culture conditions recommended by the cell bank. Dulbecco's modified Eagle's medium (DMEM), trypsin-ethylenediamine tetraacetic acid (trypsin-EDTA), mouse anti-dinitrophenol (anti-DNP) monoclonal IgE, DNP-conjugated human serum albumin (DNP-HSA) and Triton X-100 were purchased from Sigma-Aldrich Japan (Tokyo, Japan). Dimethyl sulfoxide (DMSO), glycine, glucose, sodium chloride (NaCl), calcium chloride (CaCl<sub>2</sub>), magnesium chloride hexahydrate (MgCl<sub>2</sub>·6H<sub>2</sub>O), pnitrophenyl-2-acetamido-2-deoxy-β-D-glucopyranoside (PNAG), oxatomide, *n*-hexane, EtOAc, 1-BuOH, AcOH, acetone, MeOH and toluene were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). 2-[4-(2-Hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES) was obtained from Dojindo Laboratories (Kumamoto, Japan). Fetal bovine serum (FBS) (Lot. 42F9155K) was obtained from Gibco (Waltham, MA, USA). Penicillin-streptomycin mixed solution, potassium chloride (KCl) and bovine serum albumin (BSA) were obtained from Nacalai Tesque (Kyoto, Japan). Ninety-six-well plates (167008, Nunc) were obtained from Thermo Fisher Scientific K.K. (Tokyo, Japan). DIAION HP20 (Mitsubishi Chemical Corporation, Tokyo, Japan), Wakogel C-200 (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), TOYOPEARL HW-40F (Tosoh Corporation, Tokyo, Japan) and Inertsil Ph-3 (GL Sciences, Tokyo, Japan) were used for column chromatography. The preparative HPLC equipment used was SHIMADZU products (Kyoto, Japan) consisting of a pump (LC-10AD), a UV-Vis detector (SPD-10AV), a column oven (CTO-6A) and chromatopac (C-R7A plus). <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HSQC and HMBC spectra were obtained on a Varian NMR System 600 MHz instrument with CD<sub>3</sub>OD (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). The values of chemical shifts are expressed in ppm, and each coupling constant (J) is expressed in Hz. Electron spray ionization (ESI) high-resolution mass spectra were recorded on a Bruker Daltonics MicrOTOF II instrument using direct sample injection.

### Isolation of compounds 1-4 from the extract of petals from Coreopsis grandiflora

Petals from *Coreopsis grandiflora* (1.55 kg, fr. wt) were obtained in Prefectural University of Hiroshima (Shobara, Japan) on May 25, 2018. For extraction, the collected

petals were mixed with 9.3 L of MeOH-H<sub>2</sub>O (70/30, v/v) at room temperature for 1 week. After filtration, the petal extract was concentrated to an approximate volume of 700 ml. The concentrated extract was partitioned with *n*-hexane (700 ml, twice), EtOAc (700 ml, twice) and water-saturated 1-BuOH (350 ml, twice) in that order. The EtOAc layer (15.8 g), which showed degranulation inhibitory activity, was applied to a DIAION HP20 column ( $\phi$  7.0 x 32.0 cm) and eluted with a stepwise MeOH-H<sub>2</sub>O-CH<sub>3</sub>COOH gradient (fraction size 200 ml; 20/79/1, 40/59/1, 60/39/1, 80/19/1, 99/0/1 each 2 L, v/v/v) and with 3 L of acetone, and fractions eluted with MeOH-H<sub>2</sub>O-CH<sub>3</sub>COOH (20/79/1, v/v/v) (fraction A) and fractions eluted with MeOH-H<sub>2</sub>O-CH<sub>3</sub>COOH (99/0/1, v/v/v) (fraction B) showed degranulation inhibitory activities. Fraction A (8.3 g) was chromatographed on Wakogel C-200 ( $\phi$  7.0 x 40.1 cm) and eluted with a stepwise hexane-acetone gradient (70/30: 2.5 L, 60/40: 2.5 L, 50/50: 3.0 L, 0/100: 4.5 L, v/v) to isolate an active compound eluted with hexane-acetone (60/40, v/v) (compound 1, 223.4 mg) and to obtain active fractions eluted with hexane-acetone (50/50, v/v) (fraction C). Fraction C (731.0 mg) was further purified by TOYOPEARL HW-40F ( $\phi$ 2.5 x 97.2 cm) with MeOH-H<sub>2</sub>O-CH<sub>3</sub>COOH (80/19.8/0.2, v/v/v) to isolate two active compounds (compound 2, 407.3 mg, and compound 3, 49.6 mg). On the other hand, fraction B (602.4 mg) was chromatographed on Wakogel C-200 (\$\$\phi\$ 2.0 x 39.4 cm) and eluted with a stepwise hexane-acetone gradient (80/20: 180 ml, 70/30: 180 ml, 60/40: 180 ml, 50/50: 360 ml, v/v). The eluted fractions in hexane-acetone (60/40, v/v) (fraction D) showed significant activity. Moreover, a part (82.7 mg) of fraction D was dissolved with MeOH-H<sub>2</sub>O-CH<sub>3</sub>COOH (55/44/1, v/v/v) and then subjected to preparative HPLC. Preparative HPLC of an active compound was carried out on an Inertsil Ph-3 column ( $\phi$  10 x 250 mm, 5 µm). An isocratic system of MeOH-H<sub>2</sub>O-CH<sub>3</sub>COOH (55/44/1, v/v/v) was used as the mobile phase with a flow rate of 3.3 ml/min. The detection wavelength was 280 nm, and the injection volume was 180  $\mu$ l when an active compound was purified, and then an active compound (compound 4, 40.3) mg) was isolated.

Compound **1** (lanceoletin); Yellow powder. HRMS: m/z 301.0716 [M-H]<sup>-</sup> (calcd. for C<sub>16</sub>H<sub>13</sub>O<sub>6</sub><sup>-</sup>, 301.0718). The <sup>1</sup>H-NMR data of compound **1** are recorded and assigned in Table S1. These <sup>1</sup>H-NMR data were consistent with those of lanceoletin in another report [1].

Compound **2** (leptosidin); Deep yellow powder. HRMS: m/z 299.0567 [M-H]<sup>-</sup> (calcd. for C<sub>16</sub>H<sub>11</sub>O<sub>6</sub><sup>-</sup>, 299.0561). The <sup>1</sup>H-NMR data of compound **2** are recorded and assigned in Table S2.

Leptosidin was isolated from flower parts of *Coreopsis grandiflora* prior to this study; Deep yellow powder. HRMS: m/z 299.0566 [M-H]<sup>-</sup> (calcd. for C<sub>16</sub>H<sub>11</sub>O<sub>6</sub><sup>-</sup>, 299.0561). The <sup>1</sup>H and <sup>13</sup>C-NMR data of the isolated compound are recorded and assigned in Table S2. The chemical structure was determined by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HSQC (Figures S4-S6) and HRMS spectra. The geometry of carbon-carbon double bond at the C-2 and C-10 positions was assigned as *Z* judging from the chemical shift value at H-10 proton of <sup>1</sup>H-NMR spectrum [2,3] and that at C-10 carbon of <sup>13</sup>C-NMR spectrum [4]. Compound **2** isolated from the petals of flowers was identified as leptosidin by <sup>1</sup>H-NMR and HRMS and by comparison of its spectroscopic data with those of leptosidin.

Compound **3** (okanin); Yellow powder. HRMS: m/z 287.0559 [M-H]<sup>-</sup> (calcd. for C<sub>15</sub>H<sub>11</sub>O<sub>6</sub><sup>-</sup>, 287.0561). The <sup>1</sup>H and <sup>13</sup>C-NMR data of compound **3** are recorded and assigned in Table S3. The chemical structure was determined by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HSQC and HMBC (Figures S7-S10).

Compound **4** (4-methoxylanceoletin); Yellow powder. HRMS: m/z 315.0885 [M-H]<sup>-</sup> (calcd. for C<sub>17</sub>H<sub>15</sub>O<sub>6</sub><sup>-</sup>, 315.0874). The <sup>1</sup>H and <sup>13</sup>C-NMR data of compound **4** are recorded and assigned in Table S4. The chemical structure was determined by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HSQC and HMBC (Figures S11-S14).

#### Antigen-stimulated degranulation assay

The inhibitory activities of various compounds against IgE-stimulated degranulation from RBL-2H3 cells were evaluated by modifying the method of Watanabe *et al* [5]. RBL-2H3 cells were grown in DMEM supplemented with 10% FBS, 100 U/ml penicillin G and 100 µg/ml streptomycin at 37 °C in a humidified atmosphere of 95% air/5% CO<sub>2</sub>. Then RBL-2H3 cells from stock cultures were suspended in the medium and plated at 5.0 x 10<sup>4</sup> cells/200 µl/well in 96-well plates and incubated in a humidified atmosphere of 5% CO<sub>2</sub> at 37 °C. After 24 h, the cells were incubated in 100 µl of growth medium containing 50 ng/ml of mouse monoclonal anti-DNP IgE for 2 h. The incubated cells were washed with modified Tyrode (MT) buffer (137 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl<sub>2</sub>, 1 mM MgCl<sub>2</sub>•6H<sub>2</sub>O, 5.6 mM glucose, 20 mM HEPES, 0.1% BSA, pH 7.3) before 90 µl of each of the test compounds or oxatomide was added. The test compounds and oxatomide were dissolved in DMSO and diluted with MT buffer to obtain a final DMSO concentration of 0.25%. After 20-min incubation, 10 µl of DNP-labeled human serum albumin (final concentration: 50 ng/ml) was

added to the cells, and the cultures were incubated for 1 h. The supernatants were collected, and the cells were lysed with 100  $\mu$ l of MT buffer containing 0.1% Triton X-100. The  $\beta$ -hexosaminidase activities of the supernatants and cell lysates were measured using the method reported by Demo *et al* [6]. Each 20  $\mu$ l of aliquot of the supernatant or cell lysate was mixed with a 40  $\mu$ l volume of 3.3 mM PNAG in 100 mM citrate buffer (pH 4.5), and the mixture was incubated in a 96-well plate at 37 °C for 90 min. Each reaction was terminated by adding 40  $\mu$ l of 2 M glycine buffer (pH 10.4), and the absorbance of each well at 405 nm was measured using a microplate reader (Varioskan FC from Thermo Fisher Scientific, Waltham, MA, USA).

Degranulation ratio (%) = [ St-Sb / { (St-Sb) + C } ] x 100.

In this equation, St, Sb and C express the absorbance of sample-treated (St), sampleblank (Sb) and cell lysate (C) with the stimulant only, respectively.

## Ca<sup>2+</sup> ionophore-stimulated degranulation assay

The inhibitory activities of oxatomide and the isolated compounds against calcium ionophore-stimulated degranulation from RBL-2H3 cells were evaluated according to a previously published method [7]. RBL-2H3 cells were cultured at 5.0 x  $10^4$  cells/200 µl/well in a 96-well plate for 24 h at 37 °C under a humidified atmosphere with 5% CO<sub>2</sub>. The cells were washed with MT buffer before the addition of 90 µl of oxatomide or test compounds as described in the previous section. After 20-min incubation, 10 µl of calcium ionophore A23187 (final concentration: 1 µM) was added to the cells and the cultures were incubated for 1 h. The supernatants were collected, and the cells were lysed with MT buffer containing 0.1% Triton X-100. The degranulation assay was performed as described in the previous section.

### **Results and discussion**



**Figure S1:** Inhibitory effects of extract of petals of *Coreopsis grandiflora* on antigen-induced degranulation in RBL-2H3 cells.

Wortmannin (2.5  $\mu$ M) was used as positive control. Anti-dinitrophenyl (DNP)immunoglobulin E-sensitized RBL-2H3 cells were incubated with 2.5  $\mu$ M of wortmannin or 20, 40 and 60  $\mu$ g/mL of extract of *Chrysanthemum grandiflora* and stimulated with DNPhuman serum albumin. All data represent means  $\pm$  SD of triplicate cultures. \*\*p < 0.01(Dunnett's test) as compared with the control.



**Table S1:** NMR data of compound **1** (600 MHz for <sup>1</sup>H) in CD<sub>3</sub>OD.

**Figure S2:** <sup>1</sup>H-NMR spectrum of compound **1** (lanceoletin).

| position | δ <sub>H</sub>                        |                                   |
|----------|---------------------------------------|-----------------------------------|
| 1        |                                       |                                   |
| 2        |                                       |                                   |
| 3        |                                       |                                   |
| 4        | 7.35 (1H, d, <i>J</i> = 8.4 Hz)       |                                   |
| 5        | 6.74 (1H, d, <i>J</i> = 8.4 Hz)       |                                   |
| 6        |                                       |                                   |
| 7        |                                       |                                   |
| 8        |                                       |                                   |
| 9        |                                       |                                   |
| 10       | 6.72 (1H, s)                          |                                   |
| 1'       |                                       |                                   |
| 2'       | 7.48 (1H, d, <i>J</i> = 2.4 Hz)       | <sup>1</sup> 2' ( ) <sup>5'</sup> |
| 3'       |                                       |                                   |
| 4'       |                                       |                                   |
| 5'       | 6.85 (1H, d, <i>J</i> = 7.8 Hz)       | 5 2 10                            |
| 6'       | 7.27 (1H, dd, <i>J</i> = 7.8, 2.4 Hz) | ¥ 3 3                             |
| 7-OMe    | 4.13 (3H, s)                          | 0                                 |
|          |                                       |                                   |

**Table S2:** NMR data of compound **2** (600 MHz for  ${}^{1}$ H) in CD<sub>3</sub>OD.



Figure S3: <sup>1</sup>H-NMR spectrum of compound 2 (leptosidin).

| position | δ <sub>H</sub>                  | δ <sub>C</sub> |                     |
|----------|---------------------------------|----------------|---------------------|
| 1        |                                 |                |                     |
| 2        |                                 | 146.0          |                     |
| 3        |                                 | 183.1          |                     |
| 4        | 7.35 (1H, d, <i>J</i> = 7.8 Hz) | 119.3          |                     |
| 5        | 6.74 (1H, d, <i>J</i> = 7.8 Hz) | 113.1          |                     |
| 6        |                                 | 158.1          |                     |
| 7        |                                 | 132.3          |                     |
| 8        |                                 | 158.4          |                     |
| 9        |                                 | 115.2          | он он               |
| 10       | 6.72 (1H, s)                    | 113.7          | $\sum_{3'}^{11} Z'$ |
| 1'       |                                 | 145.4          |                     |
| 2'       | 7.48 (1H, d, <i>J</i> = 1.8 Hz) | 117.5          |                     |
| 3'       |                                 | 123.9          | HO 7 8 O $T$ 6      |
| 4'       |                                 | 148.2          |                     |
| 5'       | 6.85 (1H, d, <i>J</i> = 8.4 Hz) | 115.3          | 5 2 10              |
| 6'       | 7.27 (1H, dd, J = 1.8, 4.8 Hz)  | 125.0          | ¥ 3 3               |
| 7-OMe    | 4.13 (3H, s)                    | 60.1           | 0                   |
|          |                                 |                |                     |
|          |                                 |                |                     |
|          |                                 |                |                     |

**Table S3:** NMR data of the compound isolated from flower parts of *Coreopsis grandiflora*(600 MHz for <sup>1</sup>H and 150 MHz for <sup>13</sup>C) in CD<sub>3</sub>OD.



**Figure S4:** <sup>1</sup>H-NMR spectrum of leptosidin isolated from flower parts of *Coreopsis* grandiflora.



**Figure S5:** <sup>13</sup>C-NMR spectrum of leptosidin isolated from flower parts of *Coreopsis grandiflora*.



Figure S6: HSQC spectrum of leptosidin isolated from flower parts of *Coreopsis grandiflora*.

| position | δ <sub>H</sub>                        | δ <sub>C</sub> |               |
|----------|---------------------------------------|----------------|---------------|
| 1        |                                       | 127.0          | _             |
| 2        | 7.18 (1H, d, <i>J</i> = 1.8 Hz)       | 114.3          |               |
| 3        |                                       | 145.4          |               |
| 4        |                                       | 148.5          |               |
| 5        | 6.81 (1H, d, <i>J</i> = 7.8 Hz)       | 115.2          |               |
| 6        | 7.11 (1H, dd, <i>J</i> = 7.8, 1.8 Hz) | 122.2          |               |
| 1'       |                                       | 132.3          | Oll           |
| 2'       |                                       | 153.0 or 151.9 | Он            |
| 3'       |                                       | 113.7          | он з ОН       |
| 4'       |                                       | 153.0 or 151.9 |               |
| 5'       | 6.46 (1H, d, <i>J</i> = 9.6 Hz)       | 107.1          | HO 4' 3 2' OH |
| 6'       | 7.53 (1H, d, <i>J</i> = 9.6 Hz)       | 121.7          |               |
| Η-α      | 7.54 (1H, d, <i>J</i> = 15.0 Hz)      | 116.9          | 5' α          |
| Η-β      | 7.72 (1H, d, J = 15.0 Hz)             | 144.6          | 6' '          |
| C=0      |                                       | 192.6          | Ŏ             |

Table S4: NMR data of compound 3 (600 MHz for  ${}^{1}$ H and 150 MHz for  ${}^{13}$ C) in CD<sub>3</sub>OD.



Figure S7: <sup>1</sup>H-NMR spectrum of compound 3 (okanin).



Figure S8: <sup>13</sup>C-NMR spectrum of compound 3 (okanin).



Figure S9: HSQC spectrum of compound 3 (okanin).



Figure S10: HMBC spectrum of compound 3 (okanin).

| position<br>1<br>2<br>7.23<br>3<br>4<br>5<br>6.97<br>6<br>7.20 (1)<br>1' | $\delta_{\rm H}$<br>$\delta_{\rm H}$ | δ <sub>C</sub><br>128.0<br>113.8<br>146.6<br>150.4<br>111.0<br>122.2 | -                                  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------|
| 1<br>2 7.23<br>3<br>4<br>5 6.97<br>6 7.20 (1<br>1'                       | s (1H, d, <i>J</i> = 1.8 Hz)<br>7 (1H, d, <i>J</i> = 8.4 Hz)<br>H, dd, <i>J</i> = 8.4, 1.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128.0<br>113.8<br>146.6<br>150.4<br>111.0<br>122.2                   | _                                  |
| 2 7.23<br>3<br>4<br>5 6.97<br>6 7.20 (1<br>1'                            | s (1H, d, <i>J</i> = 1.8 Hz)<br>7 (1H, d, <i>J</i> = 8.4 Hz)<br>H, dd, <i>J</i> = 8.4, 1.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113.8<br>146.6<br>150.4<br>111.0<br>122.2                            |                                    |
| 3<br>4<br>5 6.97<br>6 7.20 (1<br>1'                                      | ′ (1H, d, <i>J</i> = 8.4 Hz)<br>H, dd, <i>J</i> = 8.4, 1.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 146.6<br>150.4<br>111.0<br>122.2                                     |                                    |
| 4<br>5 6.97<br>6 7.20 (1)<br>1'                                          | 7 (1H, d, <i>J</i> = 8.4 Hz)<br>H, dd, <i>J</i> = 8.4, 1.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150.4<br>111.0<br>122.2                                              |                                    |
| 5 6.97<br>6 7.20 (1<br>1'                                                | 7 (1H, d, <i>J</i> = 8.4 Hz)<br>H, dd, <i>J</i> = 8.4, 1.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111.0<br>122.2                                                       |                                    |
| 6 7.20 (1<br>1'                                                          | H, dd, <i>J</i> = 8.4, 1.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.2                                                                |                                    |
| 1'                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                    |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114.0                                                                |                                    |
| 2'                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 158.4 or 157.1                                                       |                                    |
| 3'                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.8                                                                | ОН                                 |
| 4'                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 158.4 or 157.1                                                       | 3                                  |
| 5' 6.48                                                                  | s (1H, d, <i>J</i> = 9.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.6                                                                |                                    |
| 6' 7.76                                                                  | 5 (1H, d, <i>J</i> = 9.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.4                                                                |                                    |
| H-α 7.59                                                                 | (1H, d, <i>J</i> = 15.6 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117.7                                                                |                                    |
| Η-β 7.75                                                                 | (1H, d, <i>J</i> = 15.6 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 144.4                                                                | 6                                  |
| 3'-OMe                                                                   | 3.90 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.9                                                                 | $5^{\prime}$ $1^{\prime}$ $\alpha$ |
| 4-OMe                                                                    | 3.85 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.4                                                                 | <sup>6'</sup>                      |
| C=O                                                                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 192.5                                                                | 0                                  |

**Table S5:** NMR data of compound **4** (600 MHz for <sup>1</sup>H and 150 MHz for <sup>13</sup>C) in CD<sub>3</sub>OD.



**Figure S11:** <sup>1</sup>H-NMR spectrum of compound **4** (4-methoxylanceoletin).



**Figure S12:** <sup>13</sup>C-NMR spectrum of compound **4** (4-methoxylanceoletin).



Figure S13: HSQC spectrum of compound 4 (4-methoxylanceoletin).



Figure S14: HMBC spectrum of compound 4 (4-methoxylanceoletin).

### References

- [1] A. Pardede, K. Mashita, M. Ninomiya, K. Tanaka and M. Koketsu (2016). Flavonoid profile and antileukemic activity of *Coreopsis lanceolata* flowers, *Bioorg. Med. Chem. Lett.* **26**, 2784-2787.
- [2] R. M. Seabra, P. B. Andrade, F. Ferreres and M. M. Moreira (1997). Methoxylated aurones from *cyperus capitatus, Phytochemistry* **45**, 839-840.
- [3] B. A. Brady, J. A. Kennedy and W. I. O'Sullivan (1973). The configuration of aurones, *Tetrahedron* **29**, 359-362.
- [4] A. Pelter, R. S. Ward and H. G. Heller (1979). Carbon-13 nuclear magnetic resonance spectra of (*Z*)and (*E*)-aurones, *J. Chem. Soc. Perkin. Trans.* 10, 328-329.
- [5] J. Watanabe, H. Shinmoto and T. Tsushida (2005). Coumarin and flavone derivatives from estragon and thyme as inhibitors of chemical mediator release from RBL-2H3 cells, *Biosci. Biotechnol. Biochem.* 69, 1-6.
- [6] S. D. Demo, E. Masuda, A. B. Rossi, B. T. Throndset, A. L. Gerard, E. H. Chan, R. J. Armstrong, B. P. Fox, J. B. Lorens, D. G. Payan, R. H. Scheller and J. M. Fisher (1999). Quantitative measurement of mast cell degranulation using a novel flow cytometric annexin-V binding assay, *Cytometry* 36, 340-348.
- [7] H. Matsuda, S. Tewtrakul, T. Morikawa, A. Nakamura and M. Yoshikawa (2004). Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF- $\alpha$  and IL-4 in RBL-2H3 cells, *Bioorg. Med. Chem.* **12**, 5891-5898.