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General experimental procedures  

The NMR spectra were obtained on a Bruker Avance III 700 spectrometer (Bruker 

BioSpin, Fällanden, Switzerland) using TMS as an internal standard. HR-ESIMS spectra 

were collected on a Waters Xevo G2-S TOF mass spectrometer (Waters Corporation, 

USA). TLC and column chromatography (CC) were performed on plates precoated with 

silica gel GF254 (10–40 μm) and over silica gel (200–300 mesh) (Qingdao Marine 

Chemical Factory, China), respectively. All solvents employed were of analytical grade 

(Tianjin Damao Chemical and Industry Factory, China). Semi-preparative high-

performance liquid chromatography (Semiprep HPLC) was performed on a Shimadzu 

Prominence-I LC 2030 system (Shimadzu, Tokyo, Japan), equipping with an ODS column 

(YMC-pack ODS-A, YMC Co. Ltd., Japan, 10 × 250 mm, 5 μm, 2.5 mL/min). The 

artificial sea salt was a commercial product (Guangzhou Haili Aquarium Technology 

Company, China). 

Fungal fermentation and isolation 

A large-scale fermentation of the strain GXIMD 02501 was further carried out in the 

Czapek medium (saccharose 3.0%, KCl 0.05%, FeSO4·7H2O 0.05%，NaNO3 0.3%，

KH2PO4 0.1%，NaBr 3.0%, pH 7.4) employing with 300 mL × 100 Erlenmeyer flasks (1 
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L) at room temperature for 60 days. Then all the cultures were overlaid and extracted with 

EtOAc to yield a brown extract (32 g), which was further separated into 18 subfractions 

(Frs. L1~L18) via ODS silica gel chromatography eluting with MeOH/H2O (10~100%). 

Fr. L8 was purified by semipreparative HPLC (58% MeOH/H2O, 2 mL/min, 220 nm) to 

provide 4 (6 mg, tR 22 min). Fr. L12 was purified by semipreparative HPLC (75% 

MeCN/H2O, 2 mL/min, 220 nm) to provide 2 (2.4 mg, tR 12 min). Fr. L16 was purified 

by semipreparative HPLC (73% CH3CN/H2O, 2 mL/min, 220 nm) to provide 1 (2.5 mg, 

tR 21 min). Fr. L17 was purified by semipreparative HPLC (75% MeCN/H2O, 2 mL/min, 

220 nm) to provide 3 (42 mg, tR23 min). 

Campyridone D (1): light yellow oil. 1H NMR (700 MHz, CDCl3) δH 12.53 (1H, s, 

H-1), 8.19 (1H, s, H-6), 7.40 (2H, d, J = 8.4 Hz, H-2′, 6′), 6.91 (2H, d, J = 8.4 Hz, H-3′, 

5′), 5.57 (1H, dq, J = 15.5, 6.5 Hz, H-21), 5.37 (1H, dd, J = 15.5, 8.4 Hz, H-20), 4.05 (1H, 

d, J = 13.2 Hz, H-17), 3.17 (1H, dd, J = 13.2, 10.7 Hz, H-8), 2.02 (1H, m, H-11a), 0.40 

(1H, m, H-11b), 1.97 (1H, m, H-9), 1.92 (1H, m, H-14a), 1.37 (1H, m, H-14b), 1.80 (1H, 

m, H-13a), 0.85 (1H, m, H-13b), 1.74 (3H, dd, J = 6.5, 1.8 Hz, H3-22), 1.48 (3H, s, H3-

18), 1.45 (1H, m, H-10), 1.32 (1H, m, H-12), 0.93 (1H, m, H-15), 0.89 (3H, d, J = 6.5 Hz, 

H3-19). 13C NMR (175 MHz, CDCl3) δC 202.2 (C, C-7), 166.3 (C, C-2), 164.5 (C, C-4), 

155.7 (C, C-4′), 154.0 (CH, C-6), 133.0 (CH, C-20), 130.4 (CH, C-2′, 6′), 126.6 (CH, C-

21), 125.6 (C, C-1′), 121.1 (C, C-5), 115.7 (CH, C-3′, 5′), 102.1 (C, C-3), 84.6 (CH, C-

17), 71.9 (C, C-16), 48.5 (C, C-8), 46.9 (CH, C-15), 43.2 (CH, C-9), 39.6 (CH, C-11), 

39.2 (CH2, C-10), 35.0 (CH2, C-13), 32.1 (CH, C-12), 24.9 (CH2, C-14), 23.0 (CH3, C-

18), 22.7 (CH3, C-19), 18.3 (CH3, C-22). HR-ESI-MS m/z 450.2297 [M + H]+ (calcd for 

C27H32NO5, 450.2280), 472.2108 [M + Na]+ (calcd for C27H31NNaO5, 472.2100). 

Campyridone A (2): light yellow oil. 1H NMR (700 MHz, CD3OD) δH 7.77 (1H, s, 

H-6), 7.39 (2H, d, J = 8.6 Hz, H-2′, 6′), 6.88 (2H, d, J = 8.7 Hz, H-3′,5′), 5.45 (1H, dq, J 

= 15.3, 6.5 Hz, H-21), 5.18 (1H, s, H-17), 5.09 (1H, dd, J = 15.3, 9.4 Hz, H-20), 2.46 (1H, 

dd, J = 11.9, 9.4 Hz, H-9), 2.15 (1H, m, H-14a), 1.83 (1H, m, H-13a), 1.79 (3H, s, H3-18), 

1.76 (1H, m, H-15), 1.74 (1H, m, H-11a), 1.55 (1H, m, H-10), 1.51 (3H, d, J = 6.5 Hz, 
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H3-22), 1.45 (1H, m, H-12), 1.12 (1H, m, H-14b), 1.03 (1H, m, H-13b), 0.92 (3H, d, J = 

6.6 Hz, H3-19), 0.59 (1H, m, H-11b). 13C NMR (175 MHz, CD3OD) δC 201.2 (C, C-7), 

182.6 (C, C-4), 160.2 (C, C-2), 158.8 (C, C-4′), 150.1 (C, C-16), 143.2 (C, C-6), 131.7 

(CH, C-21), 130.1 (CH, C-2′, 6′), 127.3 (CH, C-20), 123.6 (C, C-1′), 117.1 (CH, C-17), 

116.7 (CH, C-3′ ,5′), 112.2 (C, C-5), 108.3 (C, C-3), 94.9 (C, C-8), 51.2 (CH, C-9), 46.0 

(CH, C-15), 41.1 (CH, C-10), 40.1 (CH2, C-11), 36.4 (CH2, C-13), 33.7 (CH, C-12), 30.3 

(CH2, C-14), 22.9 (CH3, C-19), 21.2 (CH3, C-18), 18.1 (CH3, C-22). HR-ESI-MS m/z 

432.2177 [M + H]+ (calcd for C27H32NO5, 432.2175), 454.1993 [M + Na]+ (calcd for 

C27H29NNaO4, 454.1994), 470.1733 [M + K]+ (calcd for C27H29NNaO4, 470.1734). 

Ilicicolin H (3): pale yellow solid; 1H NMR (700 MHz, CD3OD): δH 7.44 (1H, s, H-

6), 4.93 (1H, m, H-8), 2.49 (1H, q, J = 10.5 Hz, H-9), 1.15 (1H, m, H-10), 0.51 (1H, q, J 

= 11.8 Hz, H-11a), 1.74 (1H, m, H-11b), 1.30 (1H, m, H-12), 0.90 (1H, m, H-13a), 1.71 

(1H, m, H-13b), 1.97 (1H, m, H-14a), 0.90 (1H, m, H-14b), 1.60 (1H, overlapped, H-15), 

5.24 (1H, br s, H-17), 1.57 (3H, s, H3-18), 0.86 (3H, d, J = 6.5 Hz, H3-19), 5.15 (1H, m, 

H-20), 5.33 (1H, m, H-21), 1.51 (3H, d, J = 6.5 Hz, H3-22), 6.81 (2H, d, J = 8.4 Hz, H-

3′/5′), 7.24 (2H, d, J = 8.4 Hz, H-2′/6′); 13C NMR (175 MHz, CD3OD): δC 164.1 (qC, C-

2), 108.1 (qC, C-3), 176.9 (qC, C-4), 115.8 (qC, C-5), 140.6 (CH, C-6), 211.0 (qC, C-7), 

54.8 (CH, C-8), 46.3 (CH, C-9), 44.6 (CH, C-10), 40.6 (CH2, C-11), 33.8 (CH, C-12), 

36.6 (CH2, C-13), 30.9 (CH2, C-14), 45.6 (CH, C-15), 139.2 (qC, C-16), 120.6 (CH, C-

17), 21.3 (CH3, C-18), 23.2 (CH3, C-19), 134.4 (CH, C-20), 127.3 (CH, C-21), 18.2 (CH3, 

C-22), 125.0 (qC, C-1′), 116.1 (CH, C-3′/5′), 131.3 (CH, C-2′/6′), 158.1 (qC, C-4′). HR-

ESI-MS m/z 434.2329 [M + H]+ (calcd for C27H32NO5, 434.2331), 456.2140 [M + Na]+ 

(calcd for C27H29NNaO4, 456.2151). 

Phenazine-1-carboxylic acid (4):light yellow solid. 1H NMR (700 MHz, CDCl3) δH 

15.60 (1H, s, 1-COOH), 8.99 (1H, dd, J = 7.0, 1.4 Hz, H-2), 8.54 (1H, dd, J = 8.7, 1.4 Hz, 

H-4), 8.36 (1H, dd, J = 8.2, 1.1 Hz, H-9), 8.30 (1H, dd, J = 8.6, 0.8 Hz, H-6), 8.07–7.97 

(3H, overlapped, H-3, H-7, H-8). 13C NMR (175 MHz, CDCl3) δC 166.1 (C, 1-COOH), 

144.3 (C, C-10a), 143.6 (C, C-9a), 140.2 (C, C-5a), 140.0 (C, C-4a), 137.6 (CH, C-3), 
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135.3 (CH, C-4), 133.4 (CH, C-9), 131.9 (CH, C-6), 130.4 (CH, C-2), 130.2 (CH, C-8), 

128.1 (CH, C-7), 125.1 (C, C-1). HR-ESI-MS m/z 207.0556 [M – H2O + H]+ (calcd for 

C13H7N2O, 207.0558), 225.0664 [M + H]+ (calcd for C13H9N2NaO2, 225.0664). 

 

Bioassay 

NF-κB luciferase reporter gene assay 

The isolated compounds (1−4) were tested for their inhibitory activities of LPS-induced 

NF-κB activation in RAW264.7 cells by NF-κB luciferase reporter gene assay [1, 2]. 

RAW264.7 cells stably transfected with a NF-κB luciferase reporter gene are kindly 

provided by Professor Xu (University of Western Australia, Nedlands, Australia), which 

were pretreated with these compounds (10 μM) and BAY11-7082 (NF-κB inhibitor, 5 μM, 

Sigma-Aldrich) as positive control in 96-well plates for 30 min, followed by 5 μg/mL LPS 

stimulation for 8 h. Data were expressed as the mean ± SD and analyzed using GraphPad 

Prism 7.0 software (San Diego, CA, USA). Statistical differences among groups were 

performed using one-way analysis of variance (ANOVA) with Bonferroni post-hoc test. 

A level of p < 0.05 was considered statistically significant. 

Cytotoxicity Assay 

The cytotoxicity of compounds 1–4 against PC-3 and 22Rv1 cell lines was tested by MTT 

assay [3, 4]. In brief, PC-3 and 22Rv1 cells were provided from national collection of 

authenticated cell cultures, which were cultured in RPMI1640 and DMEM media, 

respectively, supplemented with 10% fetal bovine serum (FBS) and 1 × 

penicillin/streptomycin (Gibco). Cells were cultured at 37 °C in a humidified incubator 

containing 5% CO2, which were then seeded in 96-well plates at 500–1000 cells per well 

(optimum density for growth) in a total volume of 100 µL of media. Serially diluted 

compounds (50 µL) in 250 µL of media were added to the cells. After 4 days of incubation, 

Cell-Titer GLO reagents (Promega) were added, and luminescence was measured on 

GLOMAX microplate luminometer (Promega), according to the manufacturer´s 

instructions. Docetaxel was used as a positive control with the IC50 values of 0.12 and 
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0.030 µM for PC-3 and 22Rv1 cells, respectively. 

Anti-Vibrio Assay 

Anti-Vibrio effects against a panel of marine biofilm-forming bacterial strains, including 

Vibrio parahemolyticus, V. alginolyticus, V. owensii, and V. coralliilyticus, were tested by 

using a K–B disc agar diffusion method [1, 5]. Chloramphenicol was used as a positive 

control with the same MIC value of 0.67 µg/mL. 

Molecular Docking 

The Schrödinger 2019-4 suite (Schrödinger Inc., New York, NY, USA) was employed to 

perform the docking study as reported previously [1]. The crystal structure of human NF-

κB p65 was obtained from Protein Data Bank (http://www.pdb.org) (PDB code: 3GUT, 

chain A). The initial structure of protein was first automatically corrected by “Protein 

Preparation” module. Then, the binding site was putatively similar to the pocket of HIV-

1 LTR, which was included in the crystal structure. The ligands were then flexibly docked 

to the pocket by the Glide module with standard precision mode. The docking pose with 

best glide score was chosen for presenting the bind mode of molecule. The PyMOL 

software (DeLano Scientific, Palo Alto, CA, USA) was used to obtain the 3D structures 

of the binding models.
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Figure S1: 1H NMR spectrum of campyridone D (1) (CDCl3, 700 MHz). 
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Figure S2: 1H NMR spectrum of campyridone D (1) (CDCl3, 700 MHz) (From δH 3.0 ppm to 8.3 ppm) 
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Figure S3: 1H NMR spectrum of campyridone D (1) (CDCl3, 700 MHz) (From δH 0.3 ppm to 2.2 ppm). 
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Figure S4: 13C NMR spectrum of campyridone D (1) (CDCl3, 175 MHz). 
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Figure S5: 13C NMR spectrum of campyridone D (1) (CDCl3, 175 MHz) (From δC 100 ppm to 170 ppm). 
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Figure S6: 13C NMR spectrum of campyridone D (1) (CDCl3, 175 MHz) (From δC 15 ppm to 85 ppm). 
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Figure S7: DEPT 135 NMR spectrum of campyridone D (1) (CDCl3, 175 MHz). 
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Figure S8: DEPT 135 NMR spectrum of campyridone D (1) (CDCl3, 175 MHz) (From δC 14 ppm to 56 ppm). 
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Figure S9: HSQC spectrum of campyridone D (1) (CDCl3). 



 

© 2022 ACG Publications. All rights reserved 
17 

 

 

Figure S10: HSQC spectrum of campyridone D (1) (CDCl3) (From δH 3.6 ppm to 8.8 ppm). 
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Figure S11: HSQC spectrum of campyridone D (1) (CDCl3) (From δH 0 ppm to 3.6 ppm). 
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Figure S12: HMBC spectrum of campyridone D (1) (CDCl3). 
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Figure S13: HMBC spectrum of campyridone D (1) (CDCl3) (From δH 3.5 ppm to 14.0 ppm). 
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Figure S14: HMBC spectrum of campyridone D (1) (CDCl3) (From δH 0 ppm to 3.6 ppm). 
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Figure S15: 1H-1H COSY spectrum of campyridone D (1) (CDCl3). 
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Figure S16: NOESY spectrum of campyridone D (1) (CDCl3). 



 

© 2022 ACG Publications. All rights reserved 
24 

 

 



 

© 2022 ACG Publications. All rights reserved 
25 

 

 

Figure S17: HR-ESIMS spectrum of campyridone D (1). 
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Figure S18: 1H NMR spectrum of campyridone A (2) (CD3OD, 700 MHz). 
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Figure S19: 1H NMR spectrum of campyridone A (2) (CD3OD, 700 MHz) (From δH 4.4 ppm to 8.4 ppm). 
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Figure S20: 1H NMR spectrum of campyridone A (2) (CD3OD, 700 MHz) (From δH 0.4 ppm to 2.8 ppm). 
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Figure S21: 13C NMR spectrum of campyridone A (2) (CD3OD, 175 MHz). 
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Figure S22: 13C NMR spectrum of campyridone A (2) (CD3OD, 175 MHz) (From δC 90 ppm to 165 ppm). 
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Figure S23: 13C NMR spectrum of campyridone A (2) (CD3OD, 175 MHz) (From δC 16 ppm to 56 ppm). 
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Figure S24: DEPT 135 NMR spectrum of campyridone A (2) (CD3OD, 175 MHz). 
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Figure S25: HSQC spectrum of campyridone A (2) (CD3OD). 
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Figure S26: HSQC spectrum of campyridone A (2) (CD3OD) (From δH 4.8 ppm to 8.0 ppm). 
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Figure S27: HSQC spectrum of campyridone A (2) (CD3OD) (From δH 0.4 ppm to 2.6 ppm). 
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Figure S28: HMBC spectrum of campyridone A (2) (CD3OD). 
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Figure S29: HMBC spectrum of campyridone A (2) (CD3OD) (From δH 4.4 ppm to 8.5 ppm). 
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Figure S30: HMBC spectrum of campyridone A (2) (CD3OD) (From δH 0.3 ppm to 2.8 ppm). 
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Figure S31: 1H-1H COSY spectrum of campyridone A (2) (CD3OD). 
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Figure S32: NOESY spectrum of campyridone A (2) (CD3OD). 
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Figure S33: HR-ESIMS spectrum of campyridone A (2). 



 

© 2022 ACG Publications. All rights reserved 
42 

 

 

Figure S34: 1H NMR spectrum of ilicicolin H (3) (CD3OD, 700 MHz). 
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Figure S35: 1H NMR spectrum of ilicicolin H (3) (CD3OD, 700 MHz) (From δH 4.3 ppm to 7.7 ppm). 
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Figure S36: 1H NMR spectrum of ilicicolin H (3) (CD3OD, 700 MHz) (From δH 0.4 ppm to 2.6 ppm). 
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Figure S37: 13C NMR spectrum of ilicicolin H (3) (CD3OD, 175 MHz). 
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Figure S38: 13C NMR spectrum of ilicicolin H (3) (CD3OD, 175 MHz) (From δC 100 ppm to 180 ppm). 
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Figure S39: 13C NMR spectrum of ilicicolin H (3) (CD3OD, 175 MHz) (From δC 16 ppm to 56 ppm). 
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Figure S40: DEPT 135 NMR spectrum of ilicicolin H (3) (CD3OD, 175 MHz). 
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Figure S41: DEPT 135 NMR spectrum of ilicicolin H (3) (CD3OD, 175 MHz) (From δC 10 ppm to 60 ppm). 
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Figure S42: HR-ESIMS spectrum of ilicicolin H (3). 
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Figure S43: 1H NMR spectrum of phenazine-1-carboxylic acid (4) (CDCl3, 700 MHz). 
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Figure S44: 1H NMR spectrum of phenazine-1-carboxylic acid (4) (CDCl3, 700 MHz) (From δH 7.1ppm to 9.3 ppm). 
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Figure S45: 13C NMR spectrum of phenazine-1-carboxylic acid (4) (CDCl3, 175 MHz). 
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Figure S46: 13C NMR spectrum of phenazine-1-carboxylic acid (4) (CDCl3, 175 MHz) (From δC 120 ppm to 170 ppm). 
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Figure S47: DEPT 135 NMR spectrum of phenazine-1-carboxylic acid (4) (CDCl3, 175 MHz). 
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Figure S48: HR-ESIMS spectrum of phenazine-1-carboxylic acid (4). 
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Figure S49: Anti-Vibrio activity of compounds 1–4 (3 µL 10 mg/mL) by agar diffusion method.  

The radius of zone of inhibition was measured in mm. (+: 0.1 mg/mL chloramphenicol, –: negative) 

 

Table S1: The radius of zone (mm) of inhibition of compound 4 and chloramphenicol. 

Compds V. parahaemolyticus V. alginalyticus V. owensii V. coralliilyticus 

4 13.8 15.9 13.4 16.0 

chloramphenicol 11.7 13.9 12.7 14.2 
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