Supporting Information

Rec. Nat. Prod. 17:4 (2023) 622-627

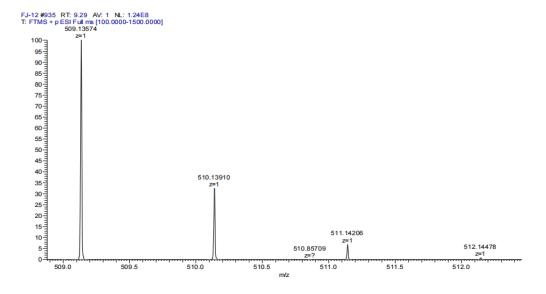
A Novel Phenanthrene and An Undescribed Alkaloid from the Roots of Stephania tetrandra

Renzhong Wang^{1,2}, Siyu Wu¹, Jinye Xu¹, Fengqing Xu^{1,2*} and Deling Wu^{1,2*}

¹School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China ²Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China

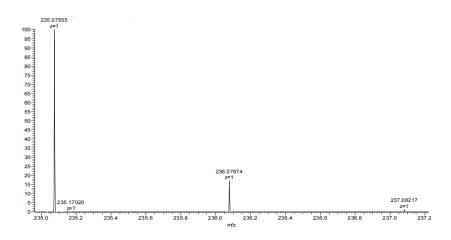
Table of Contents	page
Table S1: The most similar compound data to compound 1	2
Table S2: The most similar compound data to compound 2	3
Figure S1: The HR-ESIMS spectrum of compound 1	4
Figure S2: The HR-ESIMS data between m/z 50 to 350 in compound 1	4
Figure S3: Fragment ion of compound 1	4 5
Figure S4: The IR spectrum of compound 1	5
Figure S5: The ¹ H-NMR spectrum of compound 1 in CDCl ₃ (600 MHz)	6
Figure S6: The ¹³ C-NMR spectrum of compound 1 in CDCl ₃ (150 MHz)	6
Figure S7: The ¹ H- ¹ H COSY spectrum of compound 1 in CDCl ₃	7
Figure S8: The ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of compound 1 in CDCl ₃ (From δ_{H} 7.3 to 9.3)	7
Figure S9: The HSQC spectrum of compound 1 in CDCl ₃	8
Figure S10: The HSQC spectrum of compound 1 in CDCl ₃ (From δ_C 108 to 138)	8
Figure S11: The HMBC spectrum of compound 1 in CDCl ₃	9
Figure S12: The HMBC spectrum of compound 1 in CDCl ₃ (From $\delta_{\rm H}$ 4.9 to 7.5)	9
Figure S13: The HMBC spectrum of compound 1 in CDCl ₃ (From $\delta_{\rm H}$ 7.8 to 7.9)	10
Figure S14: The HMBC spectrum of compound 1 in CDCl ₃ (From δ_H 7.9 to 9.2)	10
Figure S15: The HR-ESIMS spectrum of compound 2	11
Figure S16: The ¹ H-NMR spectrum of compound 2 in CD ₃ OD (600 MHz)	11
Figure S17: The ¹³ C-NMR spectrum of compound 2 in CD ₃ OD (150 MHz)	12
Figure S18: The ¹ H- ¹ H COSY spectrum of compound 2 in CD ₃ OD	12
Figure S19: The ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of compound 2 in CD ₃ OD (From δ_{H} 2.9 to 4.2)	13
Figure S20: The ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of compound 2 in CD ₃ OD (From δ_{H} 6.0 to 10.0)	13
Figure S21: The HSQC spectrum of compound 2 in CD ₃ OD	14
Figure S22: The HSQC spectrum of compound 2 in CD ₃ OD (From δ_C 110 to 140)	14
Figure S23: The HMBC spectrum of compound 2 in CD ₃ OD	15
Figure S24: The HMBC spectrum of compound 2 in CD ₃ OD (From $\delta_{\rm H}$ 2.6 to 6.8)	15
Figure S25: The HMBC spectrum of compound 2 in CD ₃ OD (From δ_H 7.1 to 9.6)	16
Figure S26: SciFinder search report for the non dimer version of compound 1 with 90-99 %	17
similarity.	
Figure S27: SciFinder search report of compound 2 with 90-99 % similarity.	18
Figure S28: The NO inhibitory rates of compounds 1-4 at the concentration of $10 \mu M$	18
Figure S29: NO inhibition curve of compounds 3 and 4	19

 $\label{eq:table 1.} \textbf{Table 1.} \ \textbf{The most similar compound data to compound 1}$


Position	1		artapilosine B		
	$\delta_{\rm H}$ (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{ m C}$	
1 (1')		131.1		128.7	
2 (2')	7.32 s	109.8	7.18 s	111.0	
3 (3')		145.0		144.9	
4 (4')		143.5		142.5	
4a (4a')		117.3		117.1	
4b (4b')		128.7		129.0	
5 (5')	9.09 dd (7.8,	127.0	9.10 dd (8.0, 2.0)	127.3	
6 (6')	7.62 overlapped	126.5	7.58 overlapped	126.3	
7 (7')	7.62 overlapped	127.4	7.62 overlapped	126.8	
8 (8')	7.85 dd (7.8,	127.9	7.84 dd (8.0, 2.0)	127.6	
8a (8a')	1 0\	132.1		131.9	
9 (9')	7.62 overlapped	125.8	7.60 d (10.0)	125.2	
10 (10')	7.93 d (9.0)	122.6	7.86 d (10.0)	122.6	
10a (10a')		126.2		126.2	
$\alpha (\alpha')$	5.11 s	63.9	3.33 t (6.8)	36.7	
β (β ')			3.37 t (6.8)	63.2	
OCH ₂ O (OCH ₂ O')	6.26 s	101.4	6.24 s	101.1	

Recorded in CDCl₃

Table 2. The most similar compound data to compound ${\bf 2}$


Position	2 ^a		stephenanthrine ^b	
	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{ m C}$
1		126.5		131.9
2	7.37 s	112.3	7.16 s	110.1
3		146.8		145.0
4		144.7		142.3
4a		118.4		117.1
4b		129.8		128.6
5	9.12 dd (7.8, 1.8)	128.3	9.08 br d (9.6)	127.3
6	7.63 overlapped	128.3	7.83 br d (9.6)	127.3
7	7.63 overlapped	127.7	7.58-7.61 m	126.8
8	7.90 overlapped	128.9	7.58-7.61 m	126.3
8a		133.4		131.3
9	7.73 d (9.6)	127.3	7.62 br d (9.6)	125.5
10	7.90 overlapped	122.7	7.87 d (9.6)	122.4
10a		127.4		125.9
α	3.63 m	27.2	3.38 ddd (16.8, 11.2, 5.6)	30.9
β	3.76 m	64.3	2.85 ddd (16.8, 11.2, 5.6)	60.2
OCH_2O	6.30 s	102.9	6.21 s	101.1
N-CH ₃	3.41 s	50.3	2.56 s	44.5
N-CH ₂ Cl	5.48 s	69.6		

^aRecorded in CD₃OD, ^bRecorded in CDCl₃.

n	n/z	Theo. Mass Delta (ppm) RDB equiv.		Composition		
	509.13574	509.13594	-0.4	21.5	C32 H22 O5 Na	M+Na

Figure S1:The HR-ESIMS spectrum of compound 1

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
235.07555	235.07536	0.82	11.5	C16 H11 O2	

Figure S2:The HR-ESIMS data between m/z 50 to 350 in compound 1

Figure S3: Fragment ion of compound 1

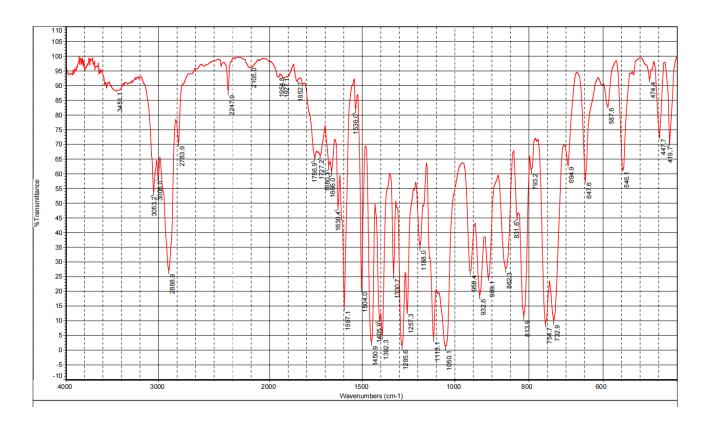
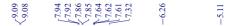
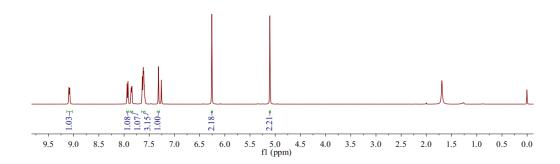
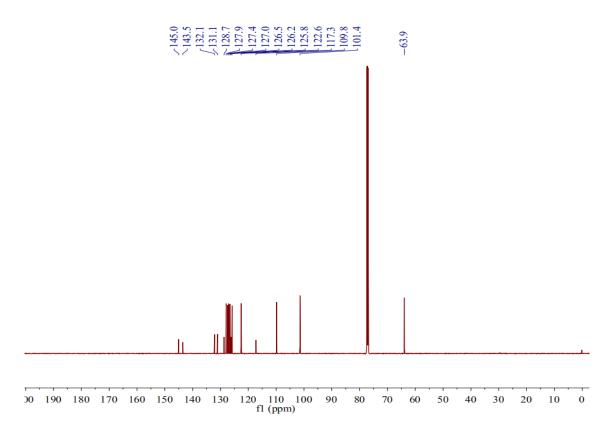





Figure S4: The IR spectrum of compound 1

Figure S5: The ¹H-NMR spectrum of compound **1** in CDCl₃ (600 MHz)

Figure S6: The ¹³C-NMR spectrum of compound **1** in CDCl₃ (150 MHz)

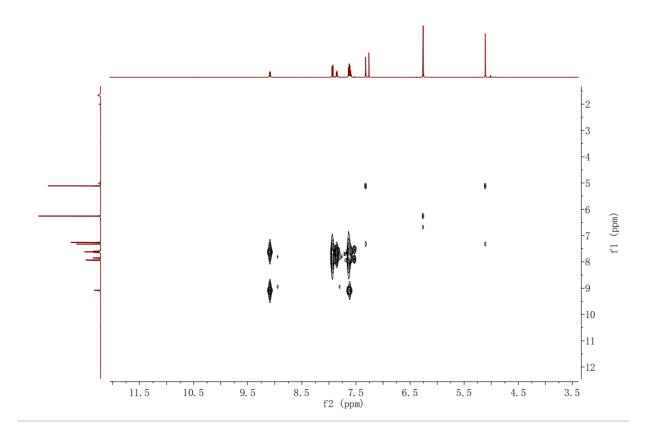
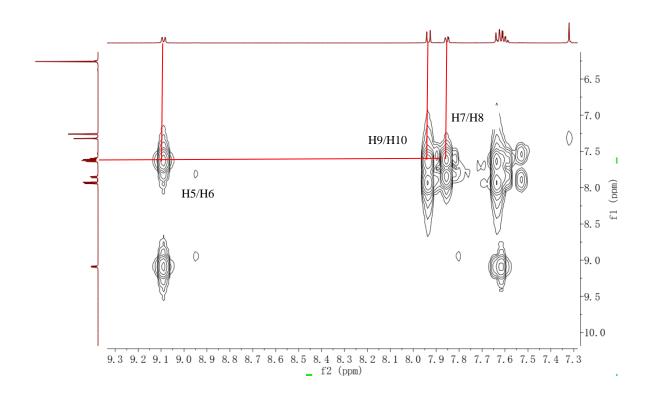



Figure S7: The ¹H-¹H COSY spectrum of compound 1 in CDCl₃

Figure S8: The ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of compound **1** in CDCl₃ (From δ_{H} 7.3 to 9.3)

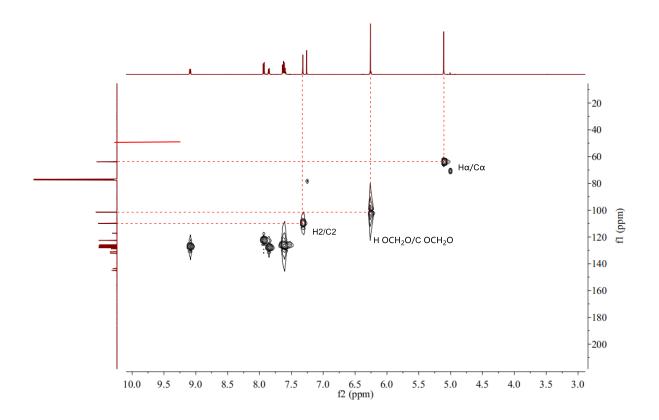
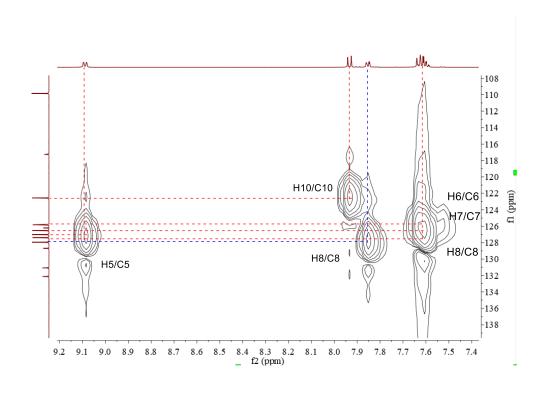
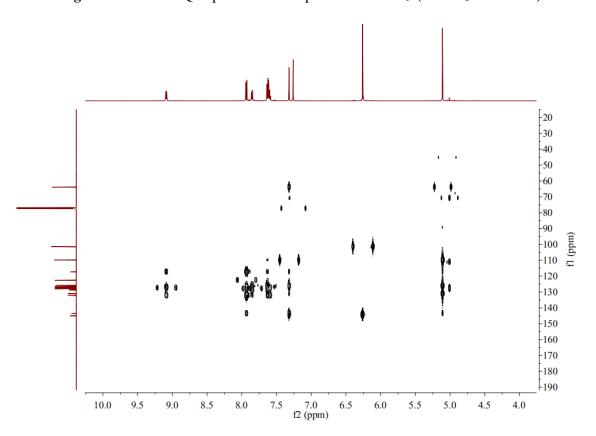
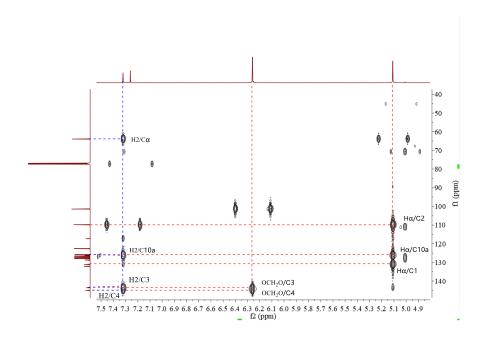
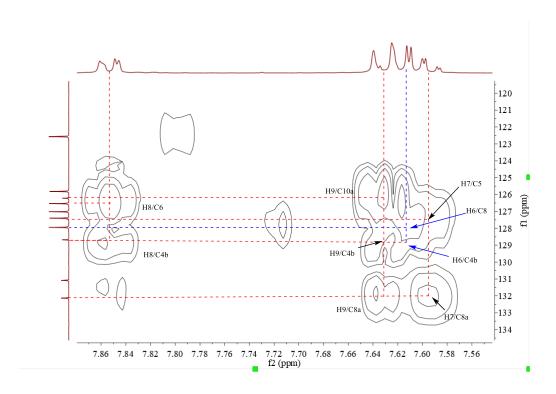
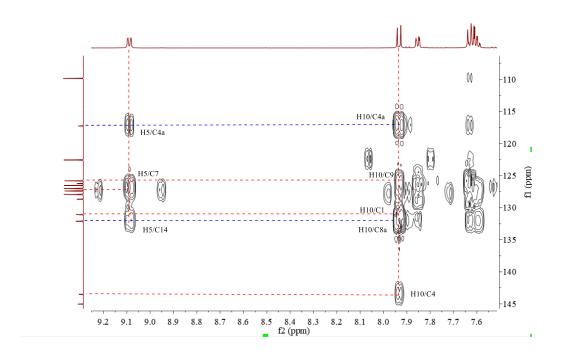



Figure S9: The HSQC spectrum of compound 1 in CDCl₃

© 2023 ACG Publications. All rights reserved.

Figure S10: The HSQC spectrum of compound **1** in CDCl₃ (From δ_C 108 to 138)


Figure S11: The HMBC spectrum of compound 1 in CDCl₃

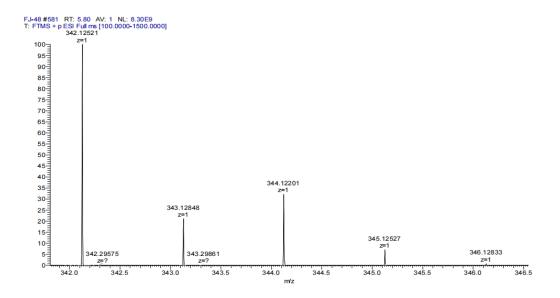

Figure S12: The HMBC spectrum of compound **1** in CDCl₃ (From $\delta_{\rm H}$ 4.9 to 7.5)

Figure S13: The HMBC spectrum of compound **1** in CDCl₃ (From δ_H 7.5 to 7.9)

Figure S14: The HMBC spectrum of compound 1 in CDCl₃ (From δ_H 7.9 to 9.2)

m/z	Theo. Mass Delta (ppm)		RDB equiv.	Composition	
342.12521	342.12553	-0.94	10.5	C20 H21 O2 N Cl	M+H

Figure S15: The HR-ESIMS spectrum of compound ${\bf 2}$

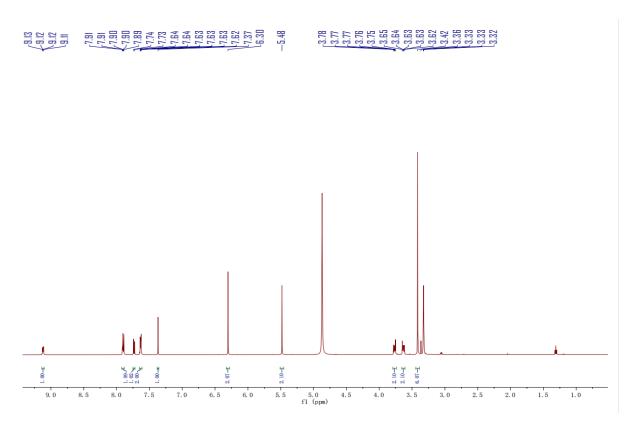


Figure S16: The ¹H-NMR spectrum of compound 2 in CD₃OD (600 MHz)

© 2023 ACG Publications. All rights reserved.

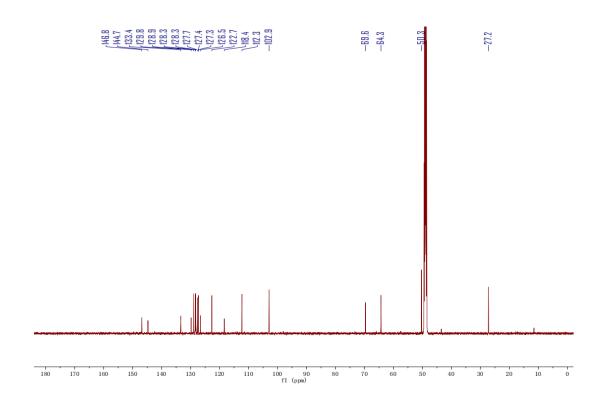


Figure S17: The ¹³C-NMR spectrum of compound 2 in CD₃OD (150 MHz)

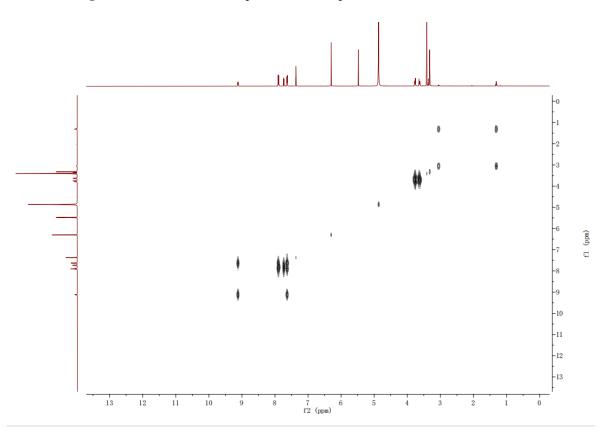
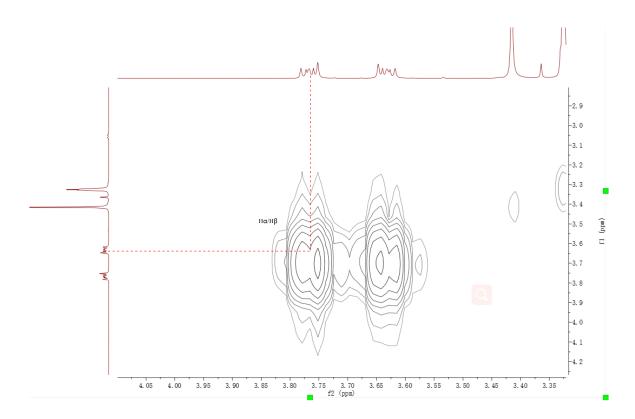
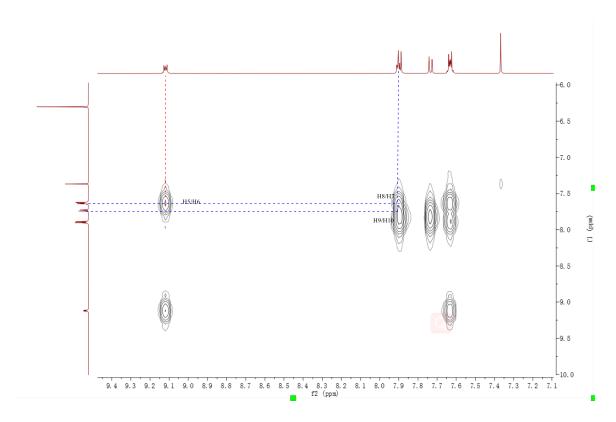




Figure S18: The ¹H-¹H COSY spectrum of compound 2 in CD₃OD

Figure S19: The ${}^{1}\text{H-}{}^{1}\text{H COSY}$ spectrum of compound **2** in CD₃OD (From δ_{H} 2.9 to 4.2)

Figure S20: The ${}^{1}\text{H-}{}^{1}\text{H COSY}$ spectrum of compound **2** in CD₃OD (From δ_{H} 6.0 to 10)

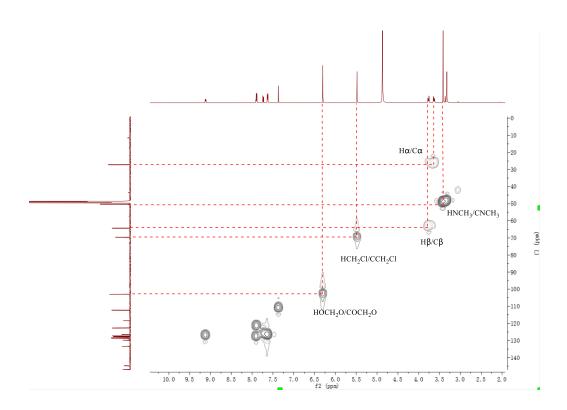
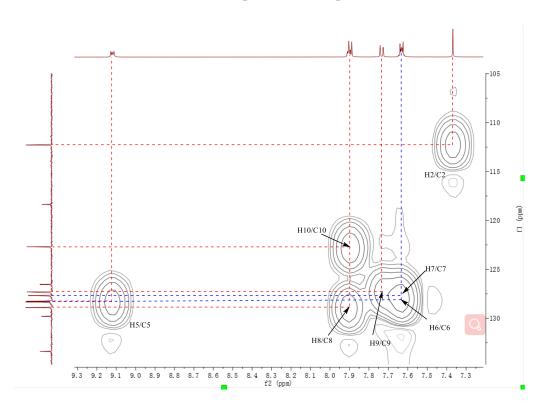



Figure S21: The HSQC spectrum of compound 2 in CD₃OD

Figure S22: The HSQC spectrum of compound **2** in CD₃OD (From δ_C 110 to 140)

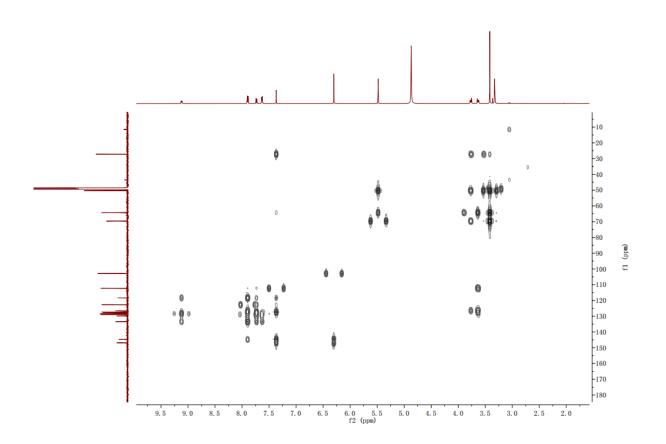
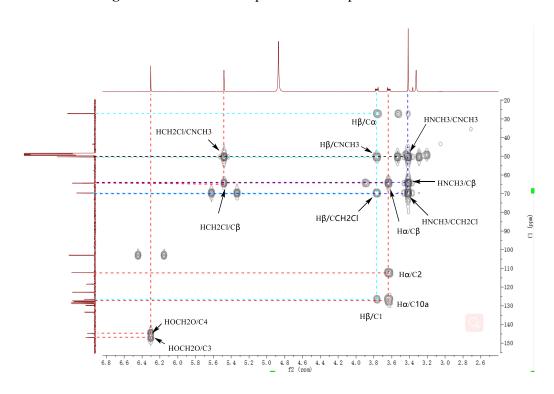
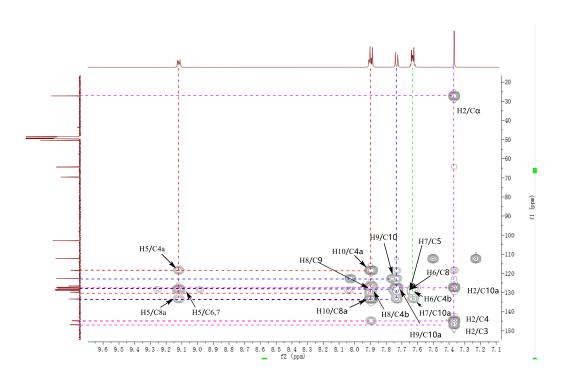




Figure S23: The HMBC spectrum of compound 2 in CD₃OD

Figure S24: The HMBC spectrum of compound **2** in CD₃OD (From $\delta_{\rm H}$ 2.6 to 6.8)

Figure S25: The HMBC spectrum of compound **2** in CD₃OD (From δ_H 7.1 to 9.6)

SciFinder® Page 2

Figure S26: SciFinder search report for the non dimer version of compound 1 with 90-99 % similarity.

SciFinderⁿ® Page 2

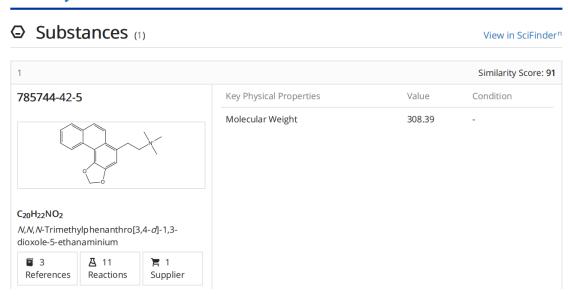


Figure S27: SciFinder search report of compound 2 with 90-99 % similarity.

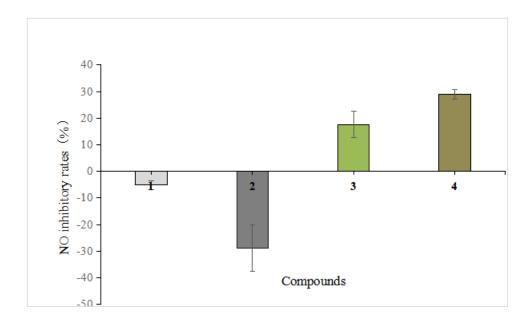


Figure S28: The NO inhibitory rates of compounds 1-4 at the concentration of 10 μM

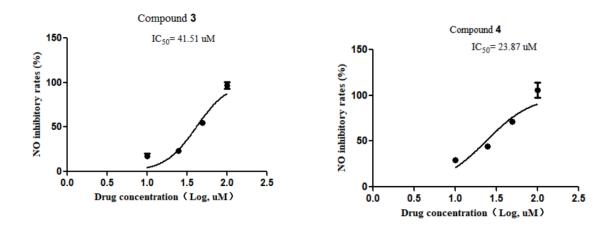


Figure S29: NO inhibition curve of compounds 3 and 4