### **Supporting Information**

### Rec. Nat. Prod. 17:4 (2023) 737-742

# Penioctadecatrienoic A: A New Polyketide from Endophytic Fungus *Penicillium pinophilum* J70

## Juan wang <sup>1, 2</sup>, Jianlin He<sup>2</sup>, Xin Liu <sup>1, 2</sup>, Bihong Hong <sup>2</sup>, Miao Yu <sup>1</sup>\* and Siwen Niu <sup>2</sup>\*

<sup>1</sup> Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, People's Republic of China

<sup>2</sup> Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China

| Table of Contents                                                                                                      | Page |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| Figure S1: HR-ESI-MS spectrum of 1 (penioctadecatrienoic A)                                                            | 2    |  |  |  |
| Figure S2: <sup>1</sup> H-NMR (600 MHz, CD <sub>3</sub> OD) spectrum of 1 (penioctadecatrienoic A)                     | 3    |  |  |  |
| Figure S3: <sup>13</sup> C-NMR (150 MHz, CD <sub>3</sub> OD) spectrum of <b>1</b> (penioctadecatrienoic A)             | 4    |  |  |  |
| Figure S4: Enlarged <sup>13</sup> C-NMR spectrum of 1 (penioctadecatrienoic A)                                         | 4    |  |  |  |
| Figure S5: Enlarged <sup>13</sup> C-NMR spectrum of 1 (penioctadecatrienoic A)                                         | 5    |  |  |  |
| Figure S6: HSQC spectrum of 1 (penioctadecatrienoic A)                                                                 | 6    |  |  |  |
| Figure S7: <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 1 (penioctadecatrienoic A)                                  | 7    |  |  |  |
| Figure S8: HMBC spectrum of 1 (penioctadecatrienoic A)                                                                 | 8    |  |  |  |
| Figure S9: Enlarged HMBC correlation of H-3 to C-2 of 1 (penioctadecatrienoic A)                                       | 9    |  |  |  |
| Figure S10: NOESY spectrum of 1 (penioctadecatrienoic A)                                                               | 10   |  |  |  |
| Figure S11: The Scifinder similarity report for new compound 1 (penioctadecatrienoic A)                                | 11   |  |  |  |
| Figure S12: <sup>1</sup> H-NMR (600 MHz, CDCl <sub>3</sub> ) spectrum of 1a ( <i>tri-(R</i> )-MPA esters of 1)         | 12   |  |  |  |
| Figure S13: <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 1a ( <i>tri-(R</i> )-MPA esters of 1)                      | 13   |  |  |  |
| Figure S14: <sup>1</sup> H-NMR (600 MHz, CDCl <sub>3</sub> ) spectrum of 1b ( <i>tri-(S</i> )-MPA esters of 1)         | 14   |  |  |  |
| Figure S15: <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 1b ( <i>tri-(S</i> )-MPA esters of 1)                      |      |  |  |  |
| <b>Table S1.</b> Comparison of <sup>1</sup> H and <sup>13</sup> C NMR data of <b>1</b> with the similar known compound |      |  |  |  |



Figure S1: HR-ESI-MS spectrum of 1 (penioctadecatrienoic A)



 $<sup>^1\</sup>mathrm{H}$  NMR spectrum of 1 measured in  $\mathrm{CD}_3\mathrm{OD}$  at 600 MHz



Figure S2: <sup>1</sup>H-NMR (600 MHz, CD<sub>3</sub>OD) spectrum of 1 (penioctadecatrienoic A)



Figure S3: <sup>13</sup>C-NMR (150 MHz, CD<sub>3</sub>OD) spectrum of **1** (penioctadecatrienoic A)



**Figure S4:** Enlarged <sup>13</sup>C-NMR spectrum of **1** (penioctadecatrienoic A)



**Figure S5:** Enlarged <sup>13</sup>C-NMR spectrum of **1** (penioctadecatrienoic A)





Figure S6: HSQC spectrum of 1 (penioctadecatrienoic A)





Figure S7: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 1 (penioctadecatrienoic A)





Figure S8: HMBC spectrum of 1 (penioctadecatrienoic A)





Figure S9: Enlarged HMBC correlation of H-3 to C-2 of 1 (penioctadecatrienoic A)





Figure S10: NOESY spectrum of 1 (penioctadecatrienoic A)



Figure S11: The Scifinder similarity report for new compound 1 (penioctadecatrienoic A)



1H NMR spectrum of 1a measured in CDC13 at 600  $\rm MHz$ 



Figure S12: <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) spectrum of 1a (*tri-(R*)-MPA esters of 1)



 $^1\mathrm{H}\mathrm{-}^1\mathrm{H}$  COSY spectrum of 1a measured in CDCl\_3 W ppm 1 2 -3 -4 H-17 /H-16 - 5 ↔ H-18/H-17 /H-<u>6</u> <del>5/H-6</del> H-11/H-12 H-12/H-13 H-14/H-15 H-2/H-3 6 -7 \_ 8 7.5 7.0 6.5 6.0 5.5 4.5 3.0 2.5 2.0 1.5 1.0 5.0 4.0 3.5 ppm

Figure S13: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 1a (*tri-(R*)-MPA esters of 1)



1H NMR spectrum of 1b measured in CDCl3 at 600 MHz



Figure S14: <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) spectrum of 1b (*tri-(S*)-MPA esters of 1)



 $^{1}\mathrm{H}\mathrm{-}^{1}\mathrm{H}$  COSY spectrum of 1b measured in  $\mathrm{CDCl}_{3}$ 



**Figure S15:** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **1b** (*tri-(S*)-MPA esters of **1**)

 $\ensuremath{\textcircled{O}}$  2023 ACG Publications. All rights reserved.

|                    | 1                     |                      | Methyl (+)-(3 <i>R</i> ,4 <i>E</i> ,6 <i>Z</i> ,15 <i>E</i> )-3- |                       |  |
|--------------------|-----------------------|----------------------|------------------------------------------------------------------|-----------------------|--|
|                    |                       |                      | methoxyoctadecatrienoate                                         |                       |  |
| no.                | $\delta_{ m C}$       | $\delta_{ m H}$      | $\delta_{ m H}$                                                  | $\delta_{ m C}$       |  |
| 1                  | 173.2, C              |                      |                                                                  | 174.1, C              |  |
| 2                  | 43.3, CH <sub>2</sub> | 2.53, m              | 2.29, m; 2.20, m                                                 | 34.1, CH <sub>2</sub> |  |
| 3                  | 69.7, CH              | 4.52, m              | 3.64 dt (8.0, 7.0)                                               | 82.5, CH              |  |
| 4                  | 132.9, CH             | 5.68, dd (15.5, 5.0) | 5.50, dd (15.5, 8.0)                                             | 134.5, CH             |  |
| 5                  | 135.3, CH             | 5.71, dd (15.5, 5.2) | 6.53, dd (15.5, 11.0)                                            | 128.5, CH             |  |
| 6                  | 72.8, CH              | 4.03, m              | 6.00, dd (11.0, 10.5)                                            | 128.9, CH             |  |
| 7                  | 38.3, CH <sub>2</sub> | 1.52, m              | 5.43, dt (10.5, 7.0)                                             | 133.0,CH              |  |
|                    |                       | 1.47, m              |                                                                  |                       |  |
| 8                  | 26.4, CH <sub>2</sub> | 1.40, m              | 2.20, m                                                          | 29.3, CH <sub>2</sub> |  |
|                    |                       | 1.34, m              |                                                                  |                       |  |
| 9                  | 30.2, CH <sub>2</sub> | 1.34, m              | 1.39, m                                                          | 30.0, CH <sub>2</sub> |  |
| 10                 | 30.6, CH <sub>2</sub> | 1.41, m              | 1.29, m                                                          | 30.0, CH <sub>2</sub> |  |
| 11                 | 33.5, CH <sub>2</sub> | 2.08, m              | 1.29, m                                                          | 30.0, CH <sub>2</sub> |  |
| 12                 | 133.7, CH             | 5.59, m              | 1.29, m                                                          | 30.0, CH <sub>2</sub> |  |
| 13                 | 131.8, CH             | 6.02, m              | 1.57, m                                                          | 25.6, CH <sub>2</sub> |  |
| 14                 | 134.1, CH             | 6.04, m              | 2.30, m                                                          | 34.3, CH <sub>2</sub> |  |
|                    |                       |                      | 2.20, m                                                          |                       |  |
| 15                 | 128.9, CH             | 5.58, m              | 5.33, dt (15.5, 7.0)                                             | 125.5, CH             |  |
| 16                 | 43.4, CH <sub>2</sub> | 2.23, m              | 5.39, dt (15.0, 7.0)                                             | 133.7, CH             |  |
|                    |                       | 2.17, m              |                                                                  |                       |  |
| 17                 | 68.6, CH              | 3.76, m              | 2.04, m                                                          | 21.2, CH <sub>2</sub> |  |
| 18                 | 22.9, CH <sub>3</sub> | 1.16, d (6.3)        | 0.92, t (7.0)                                                    | 14.4, CH <sub>3</sub> |  |
| 1-OCH <sub>3</sub> | 52.1, CH <sub>3</sub> | 3.69, s              | 3.59, s                                                          | 51.4, CH <sub>3</sub> |  |
| 3-OCH <sub>3</sub> |                       |                      | 3.20, s                                                          | 56.2, CH <sub>3</sub> |  |

Table S1. Comparison of <sup>1</sup>H and <sup>13</sup>C NMR data of 1 with the similar known compound [1]

#### References

 S. Lin, Y.-L. Zhang, M.-T. Liu, J.-C. Zi, M.-L. Gan, W.-X. Song, X.-N. Fan, S.-J. Wang, Y.-C. Yang and J.-G. Shi (2012). Methoxylated fatty acids from the bark of Fraxinus sieboldiana', *J. Asian Nat. Prod. Ees.* 14, 235-243.