Supporting Information

Rec. Nat. Prod. 17:5 (2023) 860-866

Butenolide Derivatives from the Fungus Aspergillus

terreus and Their a-Glucosidase Inhibitory Effects

Wei Shen*, Xiaojing Huang and Kai Wang

Infectious Department, The First People's Hospital of Linping District, Hangzhou 311100, China

Table of Contents	Page
Figure S1: ¹ H NMR Spectrum of 1 in CD ₃ OD (400 MHz)	2
Figure S2: ¹³ C NMR Spectrum of 1 in CD ₃ OD (100 MHz)	2
Figure S3:HSQC Spectrum of 1 in CD ₃ OD	3
Figure S4:HMBC Spectrum of 1 in CD ₃ OD	3
Figure S5: ¹ H- ¹ H COSY Spectrum of compound 1 in CD ₃ OD	4
Figure S6:NOESY spectrum of compound 1 in CD ₃ COCD ₃	4
Figure S7: ¹ H NMR Spectrum of 2 in DMSO-d ₄ (400 MHz)	5
Figure S8: ¹ H NMR Spectrum of 3 in CD ₃ OD (400 MHz)	5
Figure S9: ¹ H NMR Spectrum of 4 in CD ₃ OD (400 MHz)	6
Figure S10: ¹ H NMR Spectrum of 5 in DMSO-d ₆ (400 MHz)	6
Figure S11: ¹ H NMR Spectrum of 6 in CD ₃ OD (400 MHz)	7
Figure S12: ¹ H NMR Spectrum of 7 in DMSO-d ₄ (400 MHz)	7
Figure S13: ¹ H NMR Spectrum of 8 in DMSO-d ₄ (400 MHz)	8
Figure S14: HRESIMS Spectrum of 1	8
Figure S15: Scifinder similarity report for compound 1	9
Table S1: The NMR data of 1 and the most similar analogue.	

^{*}Corresponding author: E-Mail: swmjsyx3@163.com

^{© 2023} ACG Publications. All rights reserved.

© 2023 ACG Publications. All rights reserved.

© 2023 ACG Publications. All rights reserved.

© 2023 ACG Publications. All rights reserved.

© 2023 ACG Publications. All rights reserved.

© 2023 ACG Publications. All rights reserved.

REFERENCES 🤪	substances 🛓 Get Realtions 🧟 Get Related 🗸 😤 Tools 🔹	nd to IPlanner			
Analyze Refine Categorize	, Sort by: Accession Number 🗸 🐇 Display C				
Analyze by: 🕑 Author Name 🗸	V 0 of 2 References Selected I. Bioactive aromatic butenolides from a mangrove sediment originated fungal species, Aspergillus terreus SCAU011				
Bao Jie 1	Q. Quick View Ef Other Sources By Bao, Jac; Li, Xiu-Xiu, Zhu, Kongkai; Ho, Fci; Wang, Yin-Yin; Yu, Jin-Hai; Zhang, Xiaoyong; Zhang, Hua From Fittereneta (2021). 150, 104566. L Lancuace: English: Database: CAP.US				
Chen Chunmei 1 Gao Weixi 1	Seven new compds, including five arom, butenolde analogs (1-5), one quinazolinone alkaloid (6) and one benzoic acid deriv. (7), along with eleven known co-metabolites (8-18), were isolated from ApproxIIILs terrets SCAU011, a fungus from the rhizosphere sediment of a mangrove plant Rhizophora stylosa. The distributions of those factorize user activities that use constraints and the MMM and Grid transmission and the distribution and the second of the second se				
Guan Danyingzi 1	The structures of make excluses were established by a combination of res, vere and ELU data analysis, as well as chem, mandol. Compo. Is a faire ring- open arom, butenolide, while 6 represents the first natural ring-open benzoma/wn-type quinazolinone alkaloid. Also, the previously reported str				
He Fei 1	2. Butenolides from a marine-derived fungus Aspergillus terreus with antitumor activities against pancreatic ductal adenocarcinoma cells 9. Ouck View Ø Obler Sources				
Hu Zhengxi 1	By QL, Changxing; Gao, Weixi; Guan, Danyingzi; Wang, Jianping; Liu, Mengting; Chen, Chunmei; Zhu, Hucheng; Zhou, Yuan; Lai, YongJi; Hu, Zhengxi; et al From Bioorganic & Medicinal Chemistry (2018), 26(22), 5903-5910. Language: English; Database: CAPLUS				
Lai Yongji 1	Chem. study on the ext. of a marine-derived fungus Aspergillus terreus yielded twelve butenolide derivs., including three new compds., namely asperlides A-C (1-3) and nine known bitenolides (4-12). The structures of 1-3 were confirmed by comprehensive spectroscopic anal. including HRESIMS. NMR				
Li Xiu Xiu 1	spectroscopy, and calcl. electronic CD (ECD). The syntaxies of the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and calcl. electronic CD (ECD). The cytotoxicity of the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and that (+1-3) "dividing the lathic hybrity through the main of the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and that (+1-3) "dividing the lathic hybrity through the main of the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and that (+1-3) "dividing the lathic hybrity through the main of the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and the system of the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and the compds, the compds, the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and the compds, the compds, the compds, the compds, was evaluated using PANC-1, HCC1806, HepG2, BEAS-2B and HT-29 cancer energy and the compds, the co				
Liu Mengting 1					
Qi Changxing 1					
Show More					
ical Structure similarity					
STANCES					
Sel	ect All Deselect All				
0 ot	8 Similarity Candidates Selected	Sub			
	≥ 99 (most similar)				
	95-98				

Figure S15: Scifinder similarity report for compound 1.

No	asperlide C (1)
110.	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	δ_{C}
1		171.8		170.5
2		137.9		136.6
3		123.7		126.5
4	5.57, dd (3.6, 5.3)	80.3	5.52 m	78.9
5	3.24, dd (14.6, 3.6) 2.87, dd (14.6, 5.3)	39.8	3.16 m 2.79 m	38.3
1'	2.07, 44 (1.10, 0.0)	131.6		122.3
2'	7.58, d (8.7)	130.4	7.52 d (8.6)	128.9
3'	6.89, d (8.7)	116.6	6.85 d (8.7)	115.2
4′		159.3		157.9
5'	6.89, d (8.7)	116.6	6.85 d (8.7)	128.9
6'	7.58, d (8.7)	130.4	7.52 d (8.6)	126.5
1″	, , , , , , , , , , , , , , , , , , ,	128.2		128.5
2″	6.76, d (1.6)	127.4	6.60 m	130.8
3″		128.0		119.3
4″		160.3		151.8
5″	6.54, d (8.0)	109.2	6.51 m	116.0
6″	6.69, d (8.0, 1.6)	130.4	6.66 m	128.5
7″	3.06, m	31.5	2.82 dd (5.1, 16.3) 2.57 dd (5.7, 16.7)	30.7
8″ 9″	4.52, dd (9.2,8.7)	90.4 72 5	3.66 t (5.2)	69.1 76.6
í0″	1 19 s	253	125 s	24.5
11"	1.21, s	25.2	1.16 s	19.5

 Table S1: The NMR data of 1 and the most similar analogue.