Supporting Information

Rec. Nat. Prod. 17:5 (2023) 878-895

Comparative Anti-dengue Activities of Ethanolic and Supercritical Extracts of *Lippia origanoides* Kunth: *in-vitro* and *in-silico* analyses

Elizabeth Quintero-Rueda¹, Sindi A Velandia¹, Raquel E Ocazionez^{1*,} Elena E Stashenko¹ and Paola Rondón-Villarreal²

¹Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Colombia ²Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Bucaramanga 680003, Colombia

Table of Contents	Page
Table S1: Exact mass characteristic positive ions of compounds identified in the ethanolic	2
extract of Lippia origanoides	
Table S2: Flavonoids selected for molecular docking analyses	5
Table S3: Flavonoids of the extracts analyzed in this study with <i>in silico</i> anti-DENV activity	8
reported in other studies	
Figure S1: An example mass spectrum of pinocembrin obtained by ESI (+)-HRMS	9
(Orbitrap).	

^{*} Corresponding author : E-Mail : relocaz@uis.edu.co; Phone : (607) 6344000 ext. 3550

extract of Lippia origanolaes		T		
Name	Fragment type	Fragment formula	<i>m/z</i> (%)	
Taxifolin	$[(M+H)-C_6H_{10}O_5]^+$	$C_{15}H_{13}O_7$	305.06561 (44)	a, b, c
glucoside	$[(M+H)-C_6H_{10}O_5-H_2O]^+$	$C_{15}H_{11}O_6$	287.05496 (8)	
	$[(M+H)-C_6H_{10}O_5-C_8H_8O_3]^+$	$C_7H_5O_4$	153.01832 (72)	
Quercetin	$[(M+H)-C_6H_{10}O_5]^+$	$C_{15}H_{11}O_7$	303.04971 (100)	a, b, c
glucoside	$[(M+H)-C_6H_{10}O_5-H_2O]^+$	$C_{15}H_9O_6$	285.03970 (1)	
	$[(M+H)-C_6H_{10}O_5-C_8H_6O_3]^+$	C7H5O4	153.01811 (1)	
Eriodictyol	$[(M+H)-C_6H_{10}O_4]^+$	$C_{15}H_{13}O_{6}$	289.07086 (23)	a, b, c
rhamnoside	$[(M+H)-C_6H_{10}O_4-H_2O]^+$	$C_{15}H_{11}O_5$	271.05937 (1)	
	$[(M+H)-C_6H_{10}O_4-H_2O-C_6H_4O_2]^+$	C9H7O3	163.03883 (7)	
	$[(M+H)-C_6H_{10}O_4-C_8H_8O_2]^+$	$C_7H_5O_4$	153.01846 (15)	
Luteolin	$[(M+H)-C_6H_{10}O_4]^+$	$C_{21}H_{21}O_{11}$	449.10864 (6)	a, b, c
rutinoside	$\begin{array}{l} [(M+H)\text{-}C_{6}H_{10}O_{4}\text{-}\\ C_{6}H_{10}O_{5}]^{+} \end{array}$	$C_{15}H_{11}O_6$	287.05530 (30)	
	$[(M+H)-C_6H_{10}O_4-C_6H_{10}O_5-C_8H_6O_2]^+$	C7H5O4	153.01832 (1)	
Eriodictyol	$[(M+H)-C_6H_{10}O_5]^+$	$C_{15}H_{13}O_{6}$	289.07062 (100)	a, b, c
glucoside	$[(M+H)-C_6H_{10}O_5-H_2O]^+$	$C_{15}H_{11}O_5$	271.05969 (1)	
	$[(M+H)-C_6H_{10}O_5-C_8H_8O_2]^+$	C7H5O4	153.01810 (7)	
Luteolin	$[(M+H)-C_6H_{10}O_5]^+$	$C_{15}H_{11}O_{6}$	287.05515 (100)	a, b, c
glucoside	$[(M+H)-C_6H_{10}O_5-C_2H_2O]^+$	C13H9O5	245.04386 (1)	
	$[(M+H)-C_6H_{10}O_5-C_6H_4O_2]^+$	C9H7O4	179.03411 (1)	
	$[(M+H)-C_6H_{10}O_5-C_8H_6O_2]^+$	$C_7H_5O_4$	153.01846 (6)	
Taxifolin	$[(M+H)-H_2O]^+$	$C_{15}H_{11}O_{6}$	287.05487 (37)	a, b, c
	$[(M+H)-H_2O-CO]^+$	$C_{14}H_{11}O_5$	259.06003 (1)	
	$[(M+H)-H_2O-2CO]^+$	$C_{13}H_{11}O_4$	231.06512 (41)	
	$[(M+H)-2H_2O-2CO]^+$	$C_{13}H_9O_3$	213.05463 (14)	
	$[(M+H)-C_8H_8O_3]^+$	C7H5O4	153.01826 (72)	
Galangin	$[(M+H)-C_6H_{10}O_5]^+$	$C_{15}H_{11}O_5$	271.06012 (70)	a, b, c
glucoside	$[(M+H)-C_6H_{10}O_5-C_2H_2O]^+$	$C_{13}H_9O_4$	229.04935 (7)	
	[(M+H)- C ₆ H ₁₀ O ₅ -	C9H7O3	163.03894 (3)	

 Table S1: Exact mass characteristic positive ions of compounds identified in the ethanolic extract of *Lippia origanoides*

	$C_{6}H_{4}O_{2}]^{+}$			
	$[(M+H)-C_6H_{10}O_5-$	$C_{7}H_{5}O_{4}$	153 01825 (8)	
	$C_8H_6O]^+$	0/11304	135.01025 (0)	
Phloridzin	$[(M+H)-C_6H_{10}O_5]^+$	$C_{15}H_{15}O_5$	275.09131 (18)	a, b, c
	$[(M+H)-C_6H_{10}O_5-$	$C_{15}H_{13}O_{4}$	257.08081 (5)	
	$H_2O]^+$	- 1313 - 4	()	
	$[(M+H)-C_6H_{10}O_5-$	$C_8H_9O_4$	169.04961 (6)	
T 1 1 1	C_7H_6O	C U C		1 1
Eriodictyol	$[(M+H)-H_2O]^+$	$C_{15}H_{11}O_5$	271.05969 (4)	b, c, d
	$[(M+H)-H_2O-CO]^+$	$C_{14}H_{11}O_4$	243.05995 (0.3)	
	$[(M+H)-C_6H_6O_2]^+$	$C_9H_7O_4$	1/9.033/4 (9)	
	$[(M+H)-H_2O-C_6H_4O_2]^{+}$	$C_9H_7O_3$	163.03882 (79)	
• • •	$[(M+H)-C_8H_8O_2]^{\dagger}$	$C_7H_5O_4$	153.01810 (100)	1 1
Quercetin	$[(M+H)-H_2O]^+$	$C_{15}H_9O_6$	285.03787 (1)	b, c, d
	[(M+H)-2CO] ⁺	$C_{13}H_{11}O_5$	247.06012 (1)	
	$[(M+H)-H_2O-2CO]^+$	$C_{13}H_9O_4$	229.04951 (1)	
	$[(M+H)-C_8H_6O_3]^+$	$C_7H_5O_4$	153.01836 (8)	
Luteolin	$[(M+H)-C_2H_2O]^+$	$C_{13}H_9O_5$	245.04393 (0.6)	b, c, c
	$[(M+H)-C_6H_4O_2]^+$	$C_9H_7O_4$	179.03409 (1)	
	$[(M+H)-C_8H_6O_2]^+$	$C_7H_5O_4$	153.01822 (39)	
	$[(M+H)-C_7H_4O_4]^+$	$C_8H_7O_2$	135.04424 (12)	
Naringenin	$[(M+H)-H_2O]^+$	$C_{15}H_{11}O_4$	255.06464 (1)	b, c, c
	$[(M+H)-C_2H_2O]^+$	$C_{13}H_{11}O_4$	231.06487 (1)	
	$[(M+H)-C_8H_8O]^+$	$C_7H_5O_4$	153.01810 (100)	
	$[(M+H)-C_6H_6O]^+$	$C_9H_7O_4$	179.03371 (1)	
	$[(M+H)-3C_2H_2O]^+$	$C_9H_7O_2$	147.04393 (65)	
Chrysoeriol	$[(M+H)-CH_3]^+$	$C_{15}H_{10}O_{6}$	286.04718 (100)	
·	$[(M+H)-CH_3-CO]^+$	$C_{14}H_{10}O_5$	258.05222 (1)	a, b, c
	$[(M+H)-C_9H_8O_2]^+$	$C_7H_5O_4$	153.01855 (4)	
	$[(M+H)-C_7H_4O_4]^+$	$C_9H_9O_2$	149.05977 (1)	
	$[(M+H)-C_8H_6O_5]^+$	C ₈ H ₇ O	119.04939 (1)	
Cirsimaritin	$[(M+H)-CH_3]^+$	$C_{16}H_{12}O_{6}$	300.06265 (19)	a. b. c
	$[(M+H)-2CH_3]^+$	$C_{15}H_9O_6$	285.03961 (1)	, . , .
	$[(M+H)-CH_3-H_2O]^+$	$C_{16}H_{10}O_{5}$	282.05215 (94)	
	$[(M+H)-CH_3-H_2O-$	- 10105 G - 11 - 0		
	COl ⁺	$C_{15}H_{10}O_4$	254.05727 (100)	
	$[(M+H)-CH_3-H_2O-$			
	$2CO]^+$	$C_{14}H_{10}O_3$	226.06232 (6)	
	$[(M+H)-C_8H_6O]^+$		197,04445 (1)	
Sakuranetin	$[(M+H)-C_2H_2O]^+$	$C_{14}H_{13}O_4$	245,08090 (0,15)	a b c
	$[(M+H)-C_{6}H_{6}O]^{+}$	$C_{10}H_0O_4$	193.04971 (0.1)	u, 0, 0
	$[(M+H)-C_{\circ}H_{\circ}O]^{+}$	$C_{2}H_{7}O_{4}$	167.03386 (50)	
	$[(M+H)-C_7H_0O_2]^+$	$C_0H_7O_2$	147 04402 (36)	
Pinocembrin	$[(M+H)-H_{2}O]^{+}$	$C_{15}H_{11}O_{2}$	239 06998 (1)	had
	$[(M+H)-C_2H_2O]^+$	$C_{12}H_{11}O_{2}$	215 07010 (3)	0, 0, 0
	$[(M+H)-C_2H_2O]$	$C_0H_7O_4$	213.07010(3) 179()3/15(3)	
	$[(\mathbf{M} + \mathbf{H})^{-} \mathbf{C}_{0} \mathbf{H}_{0}]^{+}$	$C_{7}H_{2}O_{4}$	153 01816 (100)	

 $\ensuremath{\textcircled{O}}$ 2023 ACG Publications. All rights reserved.

	$[(M+H)-3C_2H_2O]^+$	C ₉ H ₇ O	131.04918 (67)	
Trimethylated	$[(M+H)-CH_3]^+$	$C_{17}H_{14}O_7$	330.07339 (12)	a, b, c
tricetin	$[(M+H)-2CH_3]^+$	$C_{16}H_{11}O_7$	315.05063 (10)	
	$[(M+H)-CH_3-H_2O]^+$	$C_{17}H_{12}O_6$	312.06262 (18)	
	[(M+H)-CH ₃ -H ₂ O- CO] ⁺	$C_{16}H_{12}O_5$	284.06769 (20)	
	$[(M+H)-C_{11}H_{12}O_3]^+$	$C_7H_5O_4$	153.01817 (44)	
Galangin	$[(M+H)-H_2O]^+$	$C_{15}H_9O_4$	253.04956 (10)	b, c, d
	$[(M+H)-C_2H_2O]^+$	$C_{13}H_9O_4$	229.04935 (8)	
	$[(M+H)-C_6H_4O_2]^+$	$C_9H_7O_3$	163.03894 (5)	
	$[(M+H)-C_8H_6O]^+$	$C_7H_5O_4$	153.01825 (26)	
	$[(M+H)-C_6H_6O_3]^+$	$C_9H_5O_2$	145.02840 (1)	
Methylated	$[(M+H)-CH_3]^+$	$C_{15}H_{10}O_5$	270.05219 (100)	
Galangin	$[(M+H)-CH_3-CO]^+$	$C_{14}H_{10}O_4$	242.05734 (23)	b, c
	[(M+H)-CH ₃ -CO- HCO] ⁺	$C_{13}H_9O_3$	213.05461 (7)	
	$[(M+H)-C_9H_8O]^+$	$C_7H_5O_4$	153.01830 (35)	

^a Amount expressed in kaempferol equivalents. ^b Tentative identification based on [M + H] +, reported in literature [1]. ^c Tentative identification based on the study of the fragmentation pattern (ESI + -HRMS) and literature [2]. ^d Confirmatory identification based on mass spectrum (ESI + -HRMS) and by comparison with the mass spectrum and tR of the certified reference substance.

N°	Name	Structural formula	PubChem
			accession number
1	Taxifolin glucoside		14187089
2	Quercetin glucoside		5280804
3	Eriodictyol rhamnoside		42607967
4	Luteolin rutinoside	$HO \longrightarrow H \longrightarrow OH$ $H_{C} \longrightarrow OH$ $H \longrightarrow O$	44258082
5	Eriodictyol glucoside		13254473
6	Luteolin glucoside		114776
7	Taxifolin	HO HO HO	439533

Table S2: Flavonoids selected for molecular docking analyses

© 2023 ACG Publications. All rights reserved.

Flavonoid	Target protein	Kcal / mol (software)	Reference
Galangin	Envelope (E)	-8.6 (AutoDock Vina)	[7]
	Polymerase NS5.	-8.0 (Maestro Schrödinger)	[9]
	domain RdRp	-8.0 (Maestro Schrödinger)	[5]
Luteolin	Protease NS3/NS2B	-8.3 (AutoDock Vina)	[3]
		-7.7 (PyRx software)	[6]
Luteolin glycoside	Protease NS3/NS2B	-8.8 (AutoDock Vina)	[3]
Naringenin	Envelope (E)	-8.1 (AutoDock Vina)	[9]
	Protease NS3/NS2B	-7.6 (AutoDock Vina)	[3]
	Polymerase NS5,	-5.6 (Maestro Schrödinger)	[5]
	domain RdRp		
Phloridzin	Polymerase NS5,	-11.1 (Glide 6.9)	[10]
	full-length		
Pinocembrin	Envelope (E)	-8.0 (AutoDock VinaXB)	[4]
Quercetin	Envelope (E)	-8.6 (AutoDock Vina)	[8]
	Polymerase NS5,	-7.8 (Glide v6.4)	[10]
	domain RdRp		
		-8.0 (Maestro Schrödinger)	[5]

Table S3: Flavonoids of the extracts analyzed in this study with *in silico* anti-DENV activity reported in other studies

Figure S1: An example mass spectrum of pinocembrin obtained by ESI (+)-HRMS (Orbitrap). Vcap +3,5 kV; HESI (Heated-electrospray ionization interface) temperature – 350 °C. **A.** Full scan; **B.** HCD (Higher-energy collision dissociation cell), 30 eV. Collision gas – nitrogen. Pinocembrin molecule suffers retro-Diels--Alder (RDA) transposition, followed by the formation of product-ions $[(M + H) - CH_2=CH-C_6H_5]^+$ at m/z 153,01813 and $C_8H_7^+$ at m/z 103,05435, as well as a product-ion $C_6H_5CH=CHCO^+$ at m/z 131.

References

- [1] E.E. Stashenko, J.R. Martínez, M.P. Cala, D.C. Durán and D. Caballero (2013). Chromatographic and mass spectrometric characterization of essential oils and extracts from *Lippia* (Verbenaceae) aromatic plants, *J. Sep. Sci.* **36**, 192–202.
- [2] D.P. Demarque, A.E. Crotti, R.Vessecchi, J.L. Lopes, and N.P. Lopes (2016). Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products, *Nat. prod. Rep.* 33, 432–455.
- [3] T.A. Bondhon, A. Hasan, K. Jannat, A. Paul, R. Jahan, T. Mahboob, V. Nissapatorn, K.D. Dolma, M.L. Pereira, C. Wiart and M. Rahmatullah (2021). Molecular docking study of *Lens culinaris* L. phytochemicals to NS3-NS2B protease od dengue virus serotype 2, *Ger. J. Microbiol.* 1, 26–37.
- [4] S. Boonyasuppayakorn, T. Saelee, P. Visitchanakun, A. Leelahavinichkul, K. Hengphasatporn, Y. Shigeta, T.N.T. Huynh, J.J.H. Chu, T. Rungrotmongkol and W. Chavasiri (2020). Dibromopinocembrin and Dibromopinostrobin are potential antidengue leads with mild animal toxicity, *Molecules*. 25, 4154.
- [5] J.F. Fatriansyah, R.K. Rizqillah and M.Y. Yandi (2022). Molecular docking and molecular dynamics simulation of Fisetin, Galangin, Hesperetin, Hesperidin, Myricetin, and Naringenin against polymerase of Dengue Virus, J. Trop. Med. 20, 7254990.
- [6] I. Ghosh and P. Talukdar (2019). Molecular docking and pharmacokinetics study for selected leaf phytochemicals from *Carica papaya* Linn. against dengue virus proteins, NS2/NS3 protease, *Word Sci. News.* 124, 264–278.
- [7] A. Hidayatullah, W.E. Putra, Sustiprijatno, G.W. Permatasari, W.O. Salma, D. Widiastuti, H. Susanto, B. Muchtaromah, D.R.T. Sari, N.F. Ningsih, M.F. Heikal, A.M.R. Yusuf and A.S. Arizona (2021). In silico targeting DENV2's prefusion envelope protein by several natural products' bioactive compounds, *J. Nat. Sci.* 20, e2021071.
- [8] N.A. Ismail and S.A. Jusoh (2017). Molecular docking and molecular dynamic simulation studies to predict flavonoid binding on the surface of DENV2 E protein, *Interdiscip. Sci.* 9, 499–511.
- [9] A. Mir, H. Ismatullah, S. Rauf and U.H.K. Niazi (2016). Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach, *Inform. Med. Unlocked.* 3, 1–6.
- [10] A. Ullah, A.T. Wahab, P. Gong, A.M. Khan and M. Iqbal Chudhary (2023). Identification of new inhibitors of NS5 from dengue virus using saturation transfer difference (STD-NMR) and molecular docking studies, *RSC Adv.* **13**, 355–569.