Supporting Information

Rec. Nat. Prod. 17:6 (2023) 1031-1045

Chemical Composition and Anthelmintic Activity of the Peruvian

Endemic Species Chuquiraga weberbaueri "Amaro"

on Sheep Fasciolosis

Pedro Ortiz^{1*}, Corpus Cerna¹, Abel García¹, Cristian Hobán¹,

César A. Murga-Moreno¹, María Cabrera¹, Luz A. Suárez-Rebaza²,

José G. Gavidia-Valencia², Juan C. Rodríguez-Soto²,

Frank R. León-Vargas³, Kosseth Bardales-Grandez³,

Cleto Jara-Herrera³, Matsen García-Navarro³,

Carmen Cerdeña-del-Aguila³, Ricardo D. D. G. de Albuquerque^{2,4}

And Mayar L. Ganoza-Yupanqui^{2*}

¹ Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca 06003, Perú

² Laboratorio de Control de Calidad, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Perú

³ Facultad de Ingeniería Química, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Perú

⁴ Laboratory of Technology in Natural Products, Fluminense Federal University, Niterói 24241-000, Brazil

Table of Contents	Page
Figure S1: MS-ESI(-) of Substance 1	4
Figure S2: MS/MS-ESI(-) of Substance 1	5
Figure S3: MS-ESI(-) of Substance 2	6
Figure S4: MS/MS-ESI(-) of Substance 2	7
Figure S5: MS-ESI(-) of Substance 3	8
Figure S6: MS-ESI(-) of Substance 4	9
Figure S7: MS/MS-ESI(-) of Substance 4	10
Figure S8: MS-ESI(-) of Substance 5	11
Figure S9: MS/MS-ESI(-) of Substance 5	12
Figure S10: MS-ESI(-) of Substance 6	13
Figure S11: MS-ESI(-) of Substance 7	14
Figure S12: MS/MS-ESI(-) of Substance 7	15
Figure S13: MS-ESI(-) of Substance 8	16
Figure S14: MS/MS-ESI(-) of Substance 8	17

Figure S15: MS-ESI(-) of Substance 9	18
Figure S16: MS/MS-ESI(-) of Substance 9	19
Figure S17: MS-ESI(-) of Substance 10	20
Figure S18: MS/MS-ESI(-) of Substance 10	21
Figure S19: MS-ESI(-) of Substance 11	22
Figure S20: MS/MS-ESI(-) of Substance 11	23
Figure S21: MS-ESI(-) of Substance 12	24
Figure S22: MS-ESI(-) of Substance 13	25
Figure S23: MS/MS-ESI(-) of Substance 13	26
Figure S24: MS-ESI(-) of Substance 14	27
Figure S25: MS/MS-ESI(-) of Substance 14	28
Figure S26: MS-ESI(-) of Substance 15	29
Figure S27: MS/MS-ESI(-) of Substance 15	30
Figure S28: MS-ESI(-) of Substance 16	31
Figure S29: MS/MS-ESI(-) of Substance 16	32
Figure S30: MS-ESI(-) of Substance 17	33
Figure S31: MS/MS-ESI(-) of Substance 17	34
Figure S32: MS-ESI(-) of Substance 18	35
Figure S33: MS/MS-ESI(-) of Substance 18	36
Figure S34: MS-FSI(-) of Substance 19	37
Figure S35: MS/MS-ESI(-) of Substance 19	38
Figure S36: MS-FSI(_) of Substance 20	39
Figure S37: MS/MS-ESI(-) of Substance 20	40
Figure S38: MS-FSI(_) of Substance 21	40
Figure S30: MS/MS_ESI(-) of Substance 21	42
Figure S40: MS-FSI(_) of Substance 22	42
Figure S40: MS/MS_ESI(-) of Substance 22	43 44
Figure S41: $MS/MS-LSI(-)$ of Substance 22 Figure S42: $MS_FSI(-)$ of Substance 23	44 45
Figure \$43: MS/MS ESI() of Substance 23	45 46
Figure S43. $MS/MS-LSI(-)$ of Substance 23	40 7
Figure S45: MS-ESI(-) of Substance 25	47
Figure S45. MS-ESI(-) of Substance D1	40
Figure S40. MS-ESI(-) of Substance D2	49 50
Figure S47. $MS-ESI(-)$ of Substance D2 Figure S48: MS ESI(-) of Substance D3	51
Figure S40: MS ESI() of Substance D4	52
Figure S50: Chlorogenic Acid Calibration Curve 1	53
Figure S50. Chlorogenic Acid Calibration Curve 1 Figure S51: LIHPL C ESL MPM/MS of Chlorogenic Acid Standards 1, 2, and 3 (Curve 1)	54
Figure S51. UHPL C-ESI-MRM/MS of Chlorogenic Acid Standards 1, 2, and 5 (Curve 1) Figure S52: UHPL C-ESI-MRM/MS of Chlorogenic Acid Standards 4, 5, and 6 (Curve 1):	55
Hydroethanolic Extract 1 and Aqueous Extract 1	55
Figure S53: Quantify of Chlorogenic Acid in Hydroethanolic Extract 1 and Aqueous Extract	56
1 (Curve 1)	50
Figure S54: Chlorogenic Acid Calibration Curve 2	57
Figure S54. Chlorogenic Acid Standards 1, 2, and 3(Curve 2)	58
Figure S55. UHDLC ESLMRM/MS of Chlorogenic Acid Standards 1, 2, and 5 (Curve 2) Figure S56: UHDLC ESLMRM/MS of Chlorogenic Acid Standards 4, 5, and 6 (Curve 2):	50
Hydroethanolic Extract 2 and Aqueous Extract 2	39
Figure S57: Quantify of Chlorogenic Acid in Hydroethanolic Extract 2 and Aqueous Extract	60
2 (Curve 2)	00
Figure S58: Chlorogenic Acid Calibration Curve 3	61
Figure 550. UHDI C ESI MDM/MS of Chlorogenia Acid Standards 1. 2 and 2 (Curve 2)	62
Figure S57. UTH LC-ESI-MRM/MS of Chlorogenic Acid Standards 4, 5, and 6 (Curve 2):	63
Hydroethanolic Extract 2 and Aqueous Extract 2	05
Tryuroemanone Extract 5 and Aqueous Extract 5	

_

 $\ensuremath{\textcircled{O}}$ 2023 ACG Publications. All rights reserved.

Figure S61: Quantify of Chlorogenic Acid in Hydroethanolic Extract 3 and Aqueous Extract	64
3 (Curve 3)	
Figure S62: Rutin Calibration Curve 1	65
Figure S63: UHPLC-ESI-MRM/MS of Rutin Standards 1, 2, and 3 (Curve 1)	66
Figure S64: UHPLC-ESI-MRM/MS of Rutin Standards 4, 5, and 6 (Curve 1);	67
Hydroethanolic Extract 1 and Aqueous Extract 1	
Figure S65: Quantify of Rutin in Hydroethanolic Extract 1 and Aqueous Extract 1 (Curve 1)	68
Figure S66: Rutin Calibration Curve 2	69
Figure S67: UHPLC-ESI-MRM/MS of Rutin Standards 1, 2, and 3 (Curve 2)	70
Figure S68: UHPLC-ESI-MRM/MS of Rutin Standards 4, 5, and 6 (Curve 2);	71
Hydroethanolic Extract 2 and Aqueous Extract 2	
Figure S69: Quantify of Rutin in Hydroethanolic Extract 2 and Aqueous Extract 2 (Curve 2)	72
Figure S70: Rutin Calibration Curve 3	73
Figure S71: UHPLC-ESI-MRM/MS of Rutin Standards 1, 2, and 3 (Curve 3)	74
Figure S72: UHPLC-ESI-MRM/MS of Rutin Standards 4, 5, and 6 (Curve 3);	75
Hydroethanolic Extract 3 and Aqueous Extract 3	
Figure S73: Quantify of Rutin in Hydroethanolic Extract 3 and Aqueous Extract 3 (Curve 3)	76
Figure S74: Quercetin Calibration Curve 1	77
Figure S75: UHPLC-ESI-MRM/MS of Quercetin Standards 1, 2, and 3 (Curve 1)	78
Figure S76: UHPLC-ESI-MRM/MS of Quercetin Standards 4, 5, and 6 (Curve 1);	79
Hydroethanolic Extract 1 and Aqueous Extract 1	
Figure S77: Quantify of Quercetin in Hydroethanolic Extract 1 and Aqueous Extract 1	80
(Curve 1)	
Figure S78: Quercetin Calibration Curve 2	81
Figure S79: UHPLC-ESI-MRM/MS of Quercetin Standards 1, 2, and 3 (Curve 2)	82
Figure S80: UHPLC-ESI-MRM/MS of Quercetin Standards 4, 5, and 6 (Curve 2);	83
Hydroethanolic Extract 2 and Aqueous Extract 2	
Figure S81: Quantify of Quercetin in Hydroethanolic Extract 2 and Aqueous Extract 2	84
(Curve 2)	
Figure S82: Quercetin Calibration Curve 3	85
Figure S83: UHPLC-ESI-MRM/MS of Quercetin Standards 1, 2, and 3 (Curve 3)	86
Figure S84: UHPLC-ESI-MRM/MS of Quercetin Standards 4, 5, and 6 (Curve 3);	87
Hydroethanolic Extract 3 and Aqueous Extract 3	
Figure S85: Quantify of Quercetin in Hydroethanolic Extract 3 and Aqueous Extract 3	88
(Curve 3)	

Figure S1: MS-ESI(-) of Substance 1

Figure S2: MS/MS-ESI(-) of Substance 1

Figure S3: MS-ESI(-) of Substance 2

Figure S4: MS/MS-ESI(-) of Substance 2

Figure S5: MS-ESI(-) of Substance 3

Figure S6: MS-ESI(-) of Substance 4

© 2023 ACG Publications. All rights reserved.

Figure S7: MS/MS-ESI(-) of Substance 4

Figure S8: MS-ESI(-) of Substance 5

© 2023 ACG Publications. All rights reserved.

Figure S9: MS/MS-ESI(-) of Substance 5

Figure S10: MS-ESI(-) of Substance 6

© 2023 ACG Publications. All rights reserved.

Figure S11: MS-ESI(-) of Substance 7

© 2023 ACG Publications. All rights reserved.

Figure S12: MS/MS-ESI(-) of Substance 7

© 2023 ACG Publications. All rights reserved.

Figure S14: MS/MS-ESI(-) of Substance 8

Figure S15: MS-ESI(-) of Substance 9

© 2023 ACG Publications. All rights reserved.

Figure S16: MS/MS-ESI(-) of Substance 9

Figure S17: MS-ESI(-) of Substance 10

© 2023 ACG Publications. All rights reserved.

100-

Figure S19: MS-ESI(-) of Substance 11

181021 Amaro MS 50% NEG

Figure S21: MS-ESI(-) of Substance 12

Figure S22: MS-ESI(-) of Substance 13

Figure S23: MS/MS-ESI(-) of Substance 13

Figure S24: MS-ESI(-) of Substance 14

Figure S25: MS/MS-ESI(-) of Substance 14

Figure S26: MS-ESI(-) of Substance 15

Figure S27: MS/MS-ESI(-) of Substance 15

Figure S28: MS-ESI(-) of Substance 16

Figure S29: MS/MS-ESI(-) of Substance 16

Figure S30: MS-ESI(-) of Substance 17

Figure S31: MS/MS-ESI(-) of Substance 17

Figure S32: MS-ESI(-) of Substance 18

Figure S33: MS/MS-ESI(-) of Substance 18

Figure S34: MS-ESI(-) of Substance 19

Figure S35: MS/MS-ESI(-) of Substance 19

Figure S36: MS-ESI(-) of Substance 20

Figure S37: MS/MS-ESI(-) of Substance 20

Figure S38: MS-ESI(-) of Substance 21

Figure S39: MS/MS-ESI(-) of Substance 21

100-

61.65 68.55 60 70 80 206.98

1: ScanWave MS ES-9.15e8

5 88 7996.74 112 63 116.73 132.87 160.80 178.89 201.03 213.03 225.37 235.62 257.21 275.00 290.75 301.04 306.69 331.73 343.28 351.87 379.31 387.01 411.11 415.05 431.15 438.95 457.09 467.99 486.99 503.63 40 40 90 00 10 10 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

Figure S41: MS/MS-ESI(-) of Substance 22

Figure S42: MS-ESI(-) of Substance 23

© 2023 ACG Publications. All rights reserved.

Figure S43: MS/MS-ESI(-) of Substance 23

© 2023 ACG Publications. All rights reserved.

Figure S44: MS-ESI(-) of Substance 24

© 2023 ACG Publications. All rights reserved.

Figure S45: MS-ESI(-) of Substance 25

© 2023 ACG Publications. All rights reserved.

Figure S46: MS-ESI(-) of Substance D1

Figure S47: MS-ESI(-) of Substance D2

Figure S48: MS-ESI(-) of Substance D3

Figure S49: MS-ESI(-) of Substance D4

Compound name: ACIDO CLOROGENICO (1) Correlation coefficient: r = 0.998742, r^2 = 0.997486 Calibration curve: 556625 * x + -4552.93 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S50: Chlorogenic Acid Calibration Curve 1

Quantify Compound Report MassLynx V4.2 SCN1007 RESULTADOS DE LABORATORIO

Dataset: C:\MassLynx\2021Tesistas.PRO\210823_CURVAACIDOCLOROGENICO_1.qld

Last Altered: Monday, August 21, 2023 17:31:16 SA Pacific Standard Time Printed: Monday, August 21, 2023 17:33:13 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\190823_acido clorogenico.mdb 21 Aug 2023 17:31:16 Calibration: 21 Aug 2023 17:31:16

Figure S51: UHPLC-ESI-MRM/MS of Chlorogenic Acid Standards 1, 2, and 3 (Curve 1)

Sample Name: 190823_STAC_PR3_POS Sample Name: 190823_STAC_PR4_POS Sample Name: 190823_STAC_PR5_POS

Figure S52: UHPLC-ESI-MRM/MS of Chlorogenic Acid Standards 4, 5, and 6 (Curve 1); Hydroethanolic Extract 1 and Aqueous Extract 1

	# Name	Туре	Std. Conc	RT	Area	IS Area Response	Primary Flags	ug/mL	%Dev
1	1 190823_STAC	Standard	0.100	5.1366	79897.891	79897.891	l bb	0.152	51.7
2	2 190823_STAC	Standard	0.500	5.1800	243268.641	243268.64	bb	0.445	-11.0
3	3 190823_STAC	Standard	1.000	5.1945	394913.063	394913.063	bb	0.718	-28.2
4	4 190823_STAC	Standard	5.000	5.2393	2329791.750	2329791.750) bb	4.194	-16.1
5	5 190823_STAC	Standard	50.000	5.2225	29220226.0	29220226.0	. bb	52.504	5.0
6	6 190823_STAC	Standard	100.000	5.1585	54871988.0	54871988.0	. bb	98.588	-1.4
7	7 190823_MAC_P	Analyte		5.1198	17492622.0	17492622.0	. bb	31.434	
8	8 190823_DEC_P	Analyte		5.1408	895424.063	895424.063	B bb	1.617	

Figure S53: Quantify of Chlorogenic Acid in Hydroethanolic Extract 1 and Aqueous Extract 1 (Curve 1)

Compound name: ACIDO CLOROGENICO (1) Correlation coefficient: r = 0.999049, r^2 = 0.998099 Calibration curve: 562968 * x + 11478.5 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S54: Chlorogenic Acid Calibration Curve 2

Quantify Compound Report MassLynx V4.2 SCN1007 RESULTADOS DE LABORATORIO

Dataset: C:\MassLynx\2021Tesistas.PRO\210823_CURVAACIDOCLOROGENICO_2.qld

Last Altered: Monday, August 21, 2023 17:34:22 SA Pacific Standard Time Printed: Monday, August 21, 2023 17:35:11 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\190823_acido clorogenico.mdb 21 Aug 2023 17:34:22 Calibration: 21 Aug 2023 17:34:22

Figure S55: UHPLC-ESI-MRM/MS of Chlorogenic Acid Standards 1, 2, and 3(Curve 2)

Figure S56: UHPLC-ESI-MRM/MS of Chlorogenic Acid Standards 4, 5, and 6 (Curve 2); Hydroethanolic Extract 2 and Aqueous Extract 2

	# Name	Туре	Std. Conc	RT	Area	IS Area Response	Primary Flags	ug/mL	%Dev
1	1 190823_STAC	Standard	0.100	5.1361	68863.273	68863.273	bb	0.102	1.9
2	2 190823_STAC	Standard	0.500	5.1305	312949.031	312949.031	dd	0.536	7.1
3	3 190823_STAC	Standard	1.000	5.1319	610334.063	610334.063	bb	1.064	6.4
4	4 190823_STAC	Standard	5.000	5.1268	2307404.500	2307404.500	bb	4.078	-18.4
5	5 190823_STAC	Standard	50.000	5.1236	29402018.0	29402018.0	bb	52.206	4.4
6	6 190823_STAC	Standard	100.000	5.1175	55528056.0	55528056.0	bb	98.614	-1.4
7	7 190823_MAC_P	Analyte		5.1091	17297620.0	17297620.0	bb	30.705	
8	8 190823_DEC_P	Analyte		5.1105	858223.125	858223.125	bb	1.504	

Figure S57: Quantify of Chlorogenic Acid in Hydroethanolic Extract 2 and Aqueous Extract 2 (Curve 2)

Compound name: ACIDO CLOROGENICO (1) Correlation coefficient: r = 0.999867, r^2 = 0.999734 Calibration curve: 524147 * x + -33459.9 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S58: Chlorogenic Acid Calibration Curve 3

Quantify Compound Report MassLynx V4.2 SCN1007 RESULTADOS DE LABORATORIO

Dataset:	Untitled
Last Altered:	Monday, August 21, 2023 17:35:34 SA Pacific Standard Time
Printed:	Monday, August 21, 2023 17:35:46 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\190823_acido clorogenico.mdb 21 Aug 2023 17:35:34 Calibration: 21 Aug 2023 17:35:34

Figure S59: UHPLC-ESI-MRM/MS of Chlorogenic Acid Standards 1, 2, and 3 (Curve 3)

Figure S60: UHPLC-ESI-MRM/MS of Chlorogenic Acid Standards 4, 5, and 6 (Curve 3); Hydroethanolic Extract 3 and Aqueous Extract 3

	# Name	Туре	Std. Conc	RT	Area	IS Area Respons	e Primary Flags	ug/mL	%Dev
1	1 190823_STAC	Standard	0.100	5.1166	33399.672	33399.67	2 bb	0.128	27.6
2	2 190823_STAC	Standard	0.500	5.1147	194224.922	194224.92	2 bb	0.434	-13.1
3	3 190823_STAC	Standard	1.000	5.1184	429023.063	429023.00	3 bb	0.882	-11.8
4	4 190823_STAC	Standard	5.000	5.1170	2496041.500	2496041.50	dd 0	4.826	-3.5
5	5 190823_STAC	Standard	50.000	5.1184	26424958.0	26424958.0	bb	50.479	1.0
6	6 190823_STAC	Standard	100.000	5.1166	52303020.0	52303020.0	bb	99.851	-0.1
7	7 190823_MAC_P	Analyte		5.1161	16999852.0	16999852.0	bb	32.497	
8	8 190823_DEC_P	Analyte		5.1185	878478.250	878478.2	0 bb	1.740	

Figure S61: Quantify of Chlorogenic Acid in Hydroethanolic Extract 3 and Aqueous Extract 3 (Curve 3)

Compound name: RUTINA Correlation coefficient: r = 0.999462, r^2 = 0.998925 Calibration curve: 877034 * x + 45598.5 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S62: Rutin Calibration Curve 1

Quantify Compound Report MassLynx V4.2 SCN1007 RESULTADOS DE LABORATORIO

Dataset: C:\MassLynx\2021Tesistas.PRO\210823_CURVARUTINA_3 opcional.qld

Last Altered: Wednesday, August 23, 2023 08:35:01 SA Pacific Standard Time Printed: Wednesday, August 23, 2023 08:36:19 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\210823_RUTINA_2.mdb 21 Aug 2023 16:00:41 Calibration: 23 Aug 2023 08:35:01

Figure S63: UHPLC-ESI-MRM/MS of Rutin Standards 1, 2, and 3 (Curve 1)

Figure S64: UHPLC-ESI-MRM/MS of Rutin Standards 4, 5, and 6 (Curve 1); Hydroethanolic Extract 1 and Aqueous Extract 1

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Primary Flags	ug/mL	%Dev
1	1 130823_STR_P	Standard	0.100	9.0215	115124.984		115124.984	bb	0.079	-20.7
2	2 130823_STR_P	Standard	0.300	9.0989	274870.344		274870.344	bb	0.261	-12.9
3	3 130823_STR_P	Standard	0.500	9.0033	545545.000		545545.000	bb	0.570	14.0
4	4 130823_STR_P	Standard	1.000	9.0962	1057356.750		1057356.750	dd	1.154	15.4
5	5 130823_STR_P	Standard	5.000	8.9879	4652220.000		4652220.000	bb	5.253	5.1
6	6 130823_STR_P	Standard	50.000	8.9734	43531684.0	4	3531684.0	bb	49.583	-0.8
7	7 130823_MACR	Analyte		9.0840	1001472.563	1000 B	1001472.563	bb	1.090	
8	8 130823_DECR	Analyte		8.9622	717347.688		717347.688	bb	0.766	

Figure S65: Quantify of Rutin in Hydroethanolic Extract 1 and Aqueous Extract 1 (Curve 1)

Compound name: RUTINA Correlation coefficient: r = 0.997567, $r^2 = 0.995140$ Calibration curve: 1.04364e+006 * x + 91038.9 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S66: Rutin Calibration Curve 2

Quantify Compound Report MassLynx V4.2 SCN1007 RESULTADOS DE LABORATORIO

Dataset: C:\MassLynx\2021Tesistas.PRO\210823_CURVADRUTINA_2 opcional.qld

Last Altered: Wednesday, August 23, 2023 09:42:05 SA Pacific Standard Time Printed: Wednesday, August 23, 2023 09:46:51 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\210823_RUTINA_3.mdb 22 Aug 2023 17:18:48 Calibration: 23 Aug 2023 09:42:05

Figure S67: UHPLC-ESI-MRM/MS of Rutin Standards 1, 2, and 3 (Curve 2)

Figure S68: UHPLC-ESI-MRM/MS of Rutin Standards 4, 5, and 6 (Curve 2); Hydroethanolic Extract 2 and Aqueous Extract 2

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Primary Flags	ug/mL	%Dev
1	1 140823_ST6R	1 Standard	0.100	8.9240	122219.648		122219.648	bb	0.030	-70.1
2	2 140823_ST6R	3 Standard	0.300	8.9748	656584.438		656584.438	bb	0.542	80.6
3	3 140823_ST7R	1 Standard	0.500	8.9837	558466.375		558466.375	bb	0.448	-10.4
4	4 140823_ST8R	1 Standard	1.000	8.9286	1086860.250	1	1086860.250	bb	0.954	-4.6
5	5 140823_ST8R	3 Standard	5.000	9.0392	5578523.000	Ę	5578523.000	bb	5.258	5.2
6	6 140823_ST9R	1 Standard	50.000	8.9496	51926764.0	5	1926764.0	bb	49.668	-0.7
7	7 140823_MAC_	1 Analyte		8.9683	1811694.500		1811694.500	bb	1.649	
8	8 140823_DEC_	1 Analyte		9.0462	879503.250		879503.250	bb	0.755	

Figure S69: Quantify of Rutin in Hydroethanolic Extract 2 and Aqueous Extract 2 (Curve 2)
Compound name: RUTINA Correlation coefficient: r = 0.967644, r^2 = 0.936335 Calibration curve: 838429 * x + -15613.6 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S70: Rutin Calibration Curve 3

Dataset: C:\MassLynx\2021Tesistas.PRO\210823_CURVARUTINA_3.qld

Last Altered: Tuesday, August 22, 2023 17:08:53 SA Pacific Standard Time Printed: Tuesday, August 22, 2023 17:11:58 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\210823_RUTINA_3.mdb 22 Aug 2023 16:20:47 Calibration: 22 Aug 2023 17:08:53

Figure S71: UHPLC-ESI-MRM/MS of Rutin Standards 1, 2, and 3 (Curve 3)

	# Name	Туре	Std. Conc	RT	Area	IS Area Respons	e Primary Flags	ug/mL	%Dev
1	1 140823_ST6R	Standard	0.100	8.9473	113668.336	113668.33	6 bb	0.154	54.2
2	2 140823_ST6R_2	Standard	0.300	9.2812	77009.258	77009.25	8 bb	0.110	-63.2
3	3 140823_ST7R	Standard	0.500	8.9907	566528.625	566528.62	5 bb	0.694	38.9
4	4 140823_ST8R	Standard	1.000	9.1120	1172867.625	1172867.62	25 bb	1.418	41.8
5	5 140823_ST8R_2	Standard	5.000	9.1391	884205.063	884205.06	3 bb	1.073	-78.5
6	6 140823_ST9R	Standard	50.000	9.0574	44798676.0	44798676.0	bb	53.450	6.9
7	7 140823_MAC_P	Analyte		8.8554	1074236.000	1074236.00	dd 0	1.300	
8	8 140823_DEC_P	Analyte		9.0677	725087.063	725087.06	3 bb	0.883	

Figure S73: Quantify of Rutin in Hydroethanolic Extract 3 and Aqueous Extract 3 (Curve 3)

Compound name: QUERCETINA Correlation coefficient: r = 0.987189, r^2 = 0.974541 Calibration curve: 243505 * x + 1534.36 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S74: Quercetin Calibration Curve 1

Dataset: C:\MassLynx\2021Tesistas.PRO\230823_CURVADEQUERCETINA_1_CASI.qld

Last Altered: Wednesday, August 23, 2023 17:18:42 SA Pacific Standard Time Printed: Wednesday, August 23, 2023 17:19:20 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\230823_QUERCETINA_1.mdb 23 Aug 2023 16:16:23 Calibration: 23 Aug 2023 17:18:42

Figure S75: UHPLC-ESI-MRM/MS of Quercetin Standards 1, 2, and 3 (Curve 1)

Figure S76: UHPLC-ESI-MRM/MS of Quercetin Standards 4, 5, and 6 (Curve 1); Hydroethanolic Extract 1 and Aqueous Extract 1

	# Name	Туре	Std. Conc	RT	Area	IS Area Response	Primary Flags	ug/mL	%Dev
1	1 040823_ST6_POS	Standard	0.100	12.8312	21469.594	21469.594	bb	0.082	-18.1
2	2 040823_ST7_POS	Standard	0.500	12.7752	102165.805	102165.805	bb	0.413	-17.3
3	3 040823_ST8_POS	Standard	1.000	12.7496	207783.281	207783.281	bb	0.847	-15.3
4	4 040823_ST8_1	Standard	5.000	13.1886	1587697.625	1587697.625	bb	6.514	30.3
5	5 040823_ST8_2	Standard	10.000	13.1471	3137065.000	3137065.000	bb	12.877	28.8
6	6 040823_ST9_POS	Standard	50.000	12.7458	11170435.0	11170435.0	bb	45.867	-8.3
7	7 040823_MAC_P	Analyte		12.8564	121747.688	121747.688	bb	0.494	
8	8 040823_DEC_P	Analyte		12.8401	6805.068	6805.068	bb	0.022	

Figure S77: Quantify of Quercetin in Hydroethanolic Extract 1 and Aqueous Extract 1 (Curve 1)

Compound name: QUERCETINA Correlation coefficient: r = 0.985111, r^2 = 0.970444 Calibration curve: 227933 * x + -1969.34 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S78: Quercetin Calibration Curve 2

Dataset: C:\MassLynx\2021Tesistas.PRO\230823_CURVADEQUERCETINA_2.qld

Last Altered: Wednesday, August 23, 2023 18:06:04 SA Pacific Standard Time Printed: Wednesday, August 23, 2023 18:06:52 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\230823_QUERCETINA_1.mdb 23 Aug 2023 17:19:51 Calibration: 23 Aug 2023 18:06:04

Figure S79: UHPLC-ESI-MRM/MS of Quercetin Standards 1, 2, and 3 (Curve 2)

Figure S80: UHPLC-ESI-MRM/MS of Quercetin Standards 4, 5, and 6 (Curve 2); Hydroethanolic Extract 2 and Aqueous Extract 2

	# Name	Туре	Std. Conc	RT	Area	IS Area Response	Primary Flags	ug/mL	%Dev
1	1 130823_ST6_POS	Standard	0.100	12.9418	17084.963	17084.963	bb	0.084	-16.4
2	2 130823_ST7_POS	Standard	0.500	12.9358	83771.359	83771.359	bb	0.376	-24.8
3	3 130823_ST8_POS	Standard	1.000	12.9288	193582.563	193582.563	bb	0.858	-14.2
4	4 130823_ST8_5	Standard	5.000	13.1093	1524286.000	1524286.000	bb	6.696	33.9
5	5 130823_ST8_6	Standard	10.000	13.1103	2969209.500	2969209.500	bb	13.035	30.4
6	6 130823_ST9_POS	Standard	50.000	12.9479	10380564.0	10380564.0	bb	45.551	-8.9
7	7 130823_MAC_P	Analyte		12.9539	116881.148	116881.148	bb	0.521	
8	8 130823_DEC_P	Analyte		12.9381	7456.821	7456.821	bb	0.041	

Figure S81: Quantify of Quercetin in Hydroethanolic Extract 2 and Aqueous Extract 2 (Curve 2)

Compound name: QUERCETINA Correlation coefficient: r = 0.999100, r^2 = 0.998201 Calibration curve: 287785 * x + -20219.6 Response type: External Std, Area Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Figure S82: Quercetin Calibration Curve 3

Dataset: C:\MassLynx\2021Tesistas.PRO\230823_CURVAQUERCETINA_3.qld

Last Altered: Wednesday, August 23, 2023 17:27:56 SA Pacific Standard Time Printed: Wednesday, August 23, 2023 17:29:05 SA Pacific Standard Time

Method: C:\MassLynx\2021Tesistas.PRO\MethDB\230823_QUERCETINA_1.mdb 23 Aug 2023 17:19:51 Calibration: 23 Aug 2023 17:27:56

Figure S83: UHPLC-ESI-MRM/MS of Quercetin Standards 1, 2, and 3 (Curve 3)

Figure S84: UHPLC-ESI-MRM/MS of Quercetin Standards 4, 5, and 6 (Curve 3); Hydroethanolic Extract 3 and Aqueous Extract 3

	# Name	Туре	Std. Conc	RT	Area	IS Area Response	Primary Flags	ug/mL	%Dev
1	1 130823_ST6_2	Standard	0.100	12.9512	10741.620	10741.620	bb	0.108	7.6
2	2 130823_ST7_2	Standard	0.500	13.0636	80347.031	80347.031	bb	0.349	-30.1
3	3 130823_ST8_2	Standard	1.000	13.0580	304373.844	304373.844	bb	1.128	12.8
4	4 130823_ST8_5	Standard	5.000	13.1093	1524286.000	1524286.000	bb	5.367	7.3
5	5 130823_ST8_6	Standard	10.000	13.1103	2969209.500	2969209.500	bb	10.388	3.9
6	6 130823_ST9_2	Standard	50.000	13.0608	14156234.0	14156234.0	bb	49.260	-1.5
7	7 130823_MAC_2	Analyte		13.0878	23052.154	23052.154	bb	0.150	
8	8 130823_DEC_2	Analyte		13.0687	3517.569	3517.569	bb	0.082	

Figure S85: Quantify of Quercetin in Hydroethanolic Extract 3 and Aqueous Extract 3 (Curve 3)