Supporting Information

Rec. Nat. Prod. 17:6 (2023) 1046-1051

Two New C_{21} Steroidal Glycosides from the Leaves

of Hoya parasitica

Cuong Viet Hoang¹, Tan Quang Tu², Lan Thi Ngoc Nguyen²,

Hung Duc Nguyen², Quan Huu Nguyen² and Mau Hoang Chu²

¹ Thai Nguyen Department of Education and Training, Thai Nguyen 24000, Viet Nam

² Thai Nguyen University of Education, Thai Nguyen 24000, Viet Nam

Table of Contents	Page
Figure S1: ¹ H NMR spectrum of 1 in C ₅ D ₅ N at 600 MHz	2
Figure S2: ¹³ C NMR spectrum of 1 in C ₅ D ₅ N at 150 MHz	3
Figure S3: HSOC spectrum of 1 in C_5D_5N at 600 MHz	4
Figure S4: HMBC spectrum of 1 in C ₅ D ₅ N at 600 MHz	5
Figure S5: COSY spectrum of 1 in C ₅ D ₅ N at 600 MHz	6
Figure S6: TOCSY spectrum of 1 in C_5D_5N at 600 MHz	7
Figure S7: ROESY spectrum of 1 in C_5D_5N at 600 MHz	8
Figure S8: HR-ESI-MS (positive mode) of 1	9
Figure S9. ¹ H NMR spectrum of 2 in C_5D_5N at 600 MHz	10
Figure S10: ¹³ C NMR spectrum of 2 in C_5D_5N at 150 MHz	11
Figure S11: HSQC spectrum of 2 in C ₅ D ₅ N at 600 MHz	12
Figure S12: HMBC spectrum of 2 in C_5D_5N at 600 MHz	13
Figure S13: COSY spectrum of 2 in C ₅ D ₅ N at 600 MHz	14
Figure S14: TOCSY spectrum of 2 in C_5D_5N at 600 MHz	15
Figure S15: ROESY spectrum of 2 in C_5D_5N at 600 MHz	16
Figure S16: HR-ESI-MS (positive mode) of 2	17
Figure S17a: Scifinder search for compound 1	18
Figure S17b: Scifinder similarity report for compound 1	19
Figure S18a: Scifinder search for compound 2	20
Figure S18b: Scifinder similarity report for compound 2	21
Figure S19: Structure of periseoside C which is the most similar to compound 1 according	23
Scifinder search.	
Figure S20: Structure of biondianoside D which is the most similar to compound 2 according	25
Scifinder search.	
Table S1: Comparisons of NMR data of parasiticoside A (1) and periseoside C	22
Table S2: Comparisons of NMR data of parasiticoside B (2) and	24

Figure S1: ¹H NMR spectrum of **1** in C_5D_5N at 600 MHz

Figure S2: ¹³C NMR spectrum of 1 in C₅D₅N at 150 MHz

Figure S3: HSQC spectrum of 1 in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Figure S4: HMBC spectrum of **1** in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Figure S5: COSY spectrum of **1** in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Figure S6: TOCSY spectrum of 1 in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Figure S7: ROESY spectrum of 1 in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Figure S8: HR-ESI-MS (positive mode) of 1

Figure S9: ¹H NMR spectrum of 2 in C_5D_5N at 150 MHz

© 2023 ACG Publications. All rights reserved.

Figure S10: ¹³C NMR spectrum of 2 in C₅D₅N at 150 MHz

Figure S11: HSQC spectrum of 2 in C₅D₅N at 150 MHz

© 2023 ACG Publications. All rights reserved.

Figure S12: HMBC spectrum of 2 in C₅D₅N at 150 MHz

Figure S13: COSY spectrum of 2 in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Figure S14: TOCSY spectrum of 2 in C₅D₅N at 600 MHz

Figure S15: ROESY spectrum of **2** in C₅D₅N at 600 MHz

© 2023 ACG Publications. All rights reserved.

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\npchem\2023 esi_pos_midle.m CPD2-pos	0930\CPD2-pos.d		Acquisition Date Operator Instrument / Ser#	30/9/2023 3:23:32 PM BDAL micrOTOF 10326
Acquisition Para Source Type Focus	meter ESI Not active	Ion Polarity	Positive	Set Nebulize Set Dry Heat Set Dry Gas	r 0.4 Bar er 180 °C 4 0 l/min
Scan End	2000 m/z	Set End Plate Offset	-500 V	Set Divert Va	live Source
Intens.					
5000		795.4142			
4000					
3000	53	7 1555			
2000	075 40 10				
1000	3/5.1349	96	4.3073	1385 4290	
04	200 400		1000 1200) 1400	1600 1800 m/z
6	+MS, 0.8-0.9min				
4 384 5 399 6 455 7 522 8 533 9 555 10 56 11 576 12 622 13 690 14 711 15 799 16 96 17 1389	3030 3053 3265 71137 474 8579 2.9265 428 9242 3.1392 553 8513 7.1555 4431 9379 1.1229 747 9439 1.1514 328 9316 3.1365 3421 11044 3.1365 3421 11044 3.1365 342 11044 3.1365 3425 5139 2.4179 338 4962 3.13073 353 46213 3.54290 279 6439				
					w.
		8.			

Initiating Search

September 11, 2023, 10:32AM

Substances:

Filtered By:

Stereochemistry:

Absolute Stereo Match

Structure Match: Substructure

Search Tasks

Task	Search Type	View
Exported: Returned Substance Results + Filters (6)	Substances	View Results

Copyright © 2023 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your SciFinderⁿ License Agreement and CAS information Use Policies.

Figure S17a: Scifinder search for compound 1

Figure S17b: Scifinder similarity report for compound 1

Initiating Search

September 11, 2023, 3:25PM

Substances:	
Filtered By:	
Similarity:	95-98
Number of Components:	1

Structure Match: Similarity

Search Tasks

Task	Search Type	View
Exported: Returned Substance Results + Filters (22)	Substances	View Results

Copyright © 2023 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your SciFinderⁿ License Agreement and CAS information Use Policies.

Figure S18a: Scifinder search for compound 2

Substances (22)

References

Reactions

Suppliers

View in SciFinderⁿ

521970-07-						Similarity Score.
	0	521970-07-0		Value	Condition	
		(DH	Molecular Weight	804.92	-	
	Sawar	×	Boiling Point (Predicted)	969.8±65.0 °C	Press: 760) Torr
-8			Density (Predicted)	1.48±0.1 g/cm ³	Temp: 20	°C; Press: 760 Torr
Absol	lute stereochemistry	/ shown	pKa (Predicted)	12.89±0.70	Most Acid	lic Temp: 25 °C
39H64O17 3β,20 <i>5</i>)-3-(β-⊏ en-20-yl 6- <i>Ο</i> -β anoside)-Glucopyranos J-D-glucopyrano	yloxy)pregn-5- syl-β-D-glucopyr	Experimental Properties	Spectra		
S References	Reactions	₹ 2 Suppliers				
2						Similarity Score:
73532-66-8			Key Physical Properties	١	/alue	Condition
Absolu	$\begin{array}{c} & & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ \\ & \\$	and the second s	Molecular Weight	٤	318.94	-
² 40 H66O17 3β,16α,20 <i>S</i>)-3, <i>Ο</i> -β-D-glucopy anosyl-(1→2)-6 galactopyrano:	,16-Dihydroxypı 'ranosyl-(1→6)- <i>C</i> -deoxy-3- <i>O</i> -me side	regn-5-en-20-yl ≻β-D-glucopyr thyl-β-D-				

Figure S18b: Scifinder similarity report for compound 2

	Para	siticoside A (1)	Periseoside C		
Position	$\delta_{ m C}$	$\delta_{ m H}$	Position	$\delta_{ m C}$	$\delta_{ m H}$
1	37.5	1.06 m, 1.62 m	1	37.5	0.95, 1.66
2	31.3	1.70 m, 2.14 m	2	30.2	1.70, 2.09 br d (11.2)
3	78.1	3.93 ov	3	78.1	3.91
4	39.3	2.28 m, 2.72 m	4	39.3	2.43 (br t, 12.8), 2.68 ddd (13.0, 4.5, 2.3)
5	140.9	-	5	140.9	-
6	125.0	5.67 br s	6	121.9	5.29 (m)
7	32.1	1.40 m, 1.95 m	7	32.1	1.44 (m), 1.81
8	31.8	1.30 ov	8	31.8	1.33
9	50.3	0.80 m	9	50.3	0.80
10	36.9	-	10	36.9	-
11	21.0	1.27 m, 1.45 m	11	21.0	1.32, 1.37
12	39.1	1.00 m, 1.82 m	12	39.1	1.00, 1.82
13	40.5	-	13	41.5	-
14	56.7	1.08 ov	14	56.7	0.86
15	28.0	1.91 m, 2.40 m	15	27.2	1.89 m, 2.33 m
16	26.4	1.05 m, 1.53 m	16	24.4	1.05, 1.53
17	62.4	1.60 ov	17	58.3	1.57 m
18	16.9	0.85 s	18	12.4	0.64 s
19	16.0	1.28 s	19	19.4	0.88 s
20	81.3	3.98 ov	20	81.3	3.86 m
21	23.5	1.12 d (6.0)	21	23.3	1.52 d (6.0)
Fuc-1	99.8	4.78 d (7.6)	Glc I-1	102.6	5.02 d (7.7)
2	74.2	4.52 dd (9.4, 7.6)	2	75.4	4.03 pt (7.9)
3	76.6	4.08 dd (9.4, 2.9)	3	78.3	4.27 pt (8.5)
4	72.9	3.93 br d (2.9)	4	71.7	4.23 pt (8.5)
5	70.8	3.62 br q (6.4)	5	78.6	3.95
6	17.0	1.46 d (6.4)	6	62.9	4.39 dd (11.6, 3.0), 4.54 br d (11.6)
Glc-1	103.4	4.90 d (7.6)	Glc II-1	106.2	4.93 d (7.7)

Table S1: Comparisons of NMR data of parasiticoside A (1) and periseoside C

© 2023 ACG Publications. All rights reserved.

Figure S19: Structure of periseoside C which is the most similar to compound 1 according to Scifinder search.

L. Wang, Z.Q. Yin, Q.W. Zhang, X.Q. Zhang, D.M. Zhang, K. Liu, Y.L. li, X.S. Yao, and W.C. Ye (2011). Five new C₂₁ steroidal glycosides from Periploca sepium, *Steroids* **76**, 238-243.

	Para	Parasiticoside B (2)			Parasiticoside B (2) Biondianoside D			Biondianoside D
Position	$\delta_{ m C}$	$\delta_{ m H}$	Position	$\delta_{ m C}$	$\delta_{ m H}$			
1	37.4	1.08 m, 1.66 m	1	37.5				
2	32.3	1.75 m, 2.18 m	2	30.2				
3	77.9	3.97 ov	3	78.1				
4	39.2	2.40 m, 2.82 m	4	39.3				
5	140.9	-	5	140.9	5.32 br s			
6	125.0	5.72 br s	6	121.9				
7	32.7	1.43 m, 1.97 m	7	32.1				
8	32.2	1.35 ov	8	31.8				
9	50.3	0.87 m	9	50.3				
10	36.3	-	10	36.9				
11	23.9	1.18 m, 1.48 m	11	21.0				
12	39.3	1.11 m, 1.83 m	12	39.0				
13	40.6	-	13	41.5				
14	56.7	1.09 ov	14	56.6				
15	28.0	1.92 m, 2.48 m	15	27.3				
16	26.8	1.09 m, 1.54 m	16	24.4				
17	62.3	1.64 ov	17	58.3				
18	16.9	0.91 s	18	12.4	0.64 s			
19	15.9	1.26 s	19	19.4	0.90 s			
20	81.2	4.01 ov	20	81.2	3.93 m			
21	23.6	1.28 d (6.0)	21	23.6	1.62 d (6.0)			
Fuc-1	99.9	4.80 d (7.6)	Glc I-1	105.3	5.03 d (7.6)			
2	74.4	4.53 dd (9.4, 7.6)	2	75.5				
3	76.4	4.12 dd (9.4, 2.9)	3	78.4				
4	73.1	3.96 br d (2.9)	4	71.7				
5	70.9	3.68 br q (6.4)	5	77.3				
6	16.8	1.49 d (6.4)	6	70.1				
Glc-1	103.5	4.88 d (7.6)	Glc II-1	106.0	4.89 d (7.6)			
2	74.6	4.06 ov	2	75.3				
3	77.9	4.28 ov	3	78.4				
4	72.3	4.18 ov	4	71.7				
5	78.1	3.96 m	5	78.5				

Table S2: Comparisons of NMR data of parasiticoside B (2) and biondianoside D

6	62.3	4.30 m, 4.52 m	6	62.8	
Rha-1	101.2	6.35 br s	Glc III-1	102.6	5.19 d (7.7)
2	72.1	4.79 br s	2	75.2	
3	72.2	4.61 dd (9.4, 3.5)	3	78.5	
4	73.8	4.35 dd (9.9, 9.4)	4	71.7	
5	69.0	4.83 dq (9.9, 5.9)	5	78.6	
6	18.7	1.78 d (5.9)	6	62.8	

Figure S20: Structure of biondianoside D which is the most similar to compound 2 according to Scifinder search.

X.G. Tang, X.R. Zhang, S.L. Peng, X. Liao, and L.S. Ding (2003). Chemical constituents from the roots of Biondia hemsleyana, *Chem. J. Chinese Universit.* **24**, 436-441.