Supporting Information

Rec. Nat. Prod. 16:6 (2023) 1090-1094

5,6-Dihydroxypyranoflavone, a New Flavonoid with an Oxidized Prenyl Group from Dietary plant *Citrus hystrix*

Jin-Rui Zhang^{1,3}, Fu-Jin-Wen Li^{2*} and Long-Teng Cui^{1*}

¹ School of Physical Education, Yunnan Minzu University, Kunming 650031, P.R. China.

² Yunnan Association of Minority Sports, Kunming 650500, P.R. China.

³ School of Physical Education, Neijiang Normal University, Neijiang 641100, P.R. China.

Table of Contents	Page
Figure S1: The HR-ESI-MS spectrum of 1	3
Figure S2: The ESI-MS spectrum of 1	3
Figure S3: The ¹ H-NMR (400 MHz, DMSO- <i>d</i> 6) spectrum of 1	4
Figure S4: The ¹ H-NMR (400 MHz, CDCl ₃) spectrum of 1	4
Figure S5: The ¹³ C NMR (100 MHz, DMSO- <i>d</i> 6) spectrum of 1	5
Figure S6: The ¹³ C NMR (100 MHz, CDCl ₃) spectrum of 1	5
Figure S7: The ¹ H-NMR (400 MHz, CDCl ₃) spectrum of synthetic 1	6
Figure S8: The ¹³ C NMR (100 MHz, CDCl ₃) spectrum of synthetic 1	6
Figure S9: The ¹³ C NMR (100 MHz, DMSO- <i>d</i> 6) spectrum of 1 (From $\delta_{\rm C}$ 120 to 150 ppm)	7
Figure S10: The HSQC spectrum of 1	7
Figure S11 : The HSQC spectrum of 1 (From $\delta_{\rm C}$ 100 to 140 ppm)	8
Figure S12: The ¹ H- ¹ H COSY spectrum of 1	8
Figure S13: The ¹ H- ¹ H COSY of H-1"/H-2", H-2'(6')/H-3'(5'), and H-2'(6')/H-4' of 1	9
Figure S14: The HMBC spectrum of 1	9
Figure S15: The HMBC correlations of 5-OH to C-5, C-6 and C-10 of 1	10
Figure S16: The HMBC correlations of CH_3 -4"/5" to C-3" and C-2" of 1	10
Figure S17: The HMBC correlations of CH-1" to C-7, C-8 and C-9 of 1	11
Figure S18: The HMBC correlations of CH-3 to C-2, C-4, C-10 and C-1' of 1	11
Figure S19: The ¹ H-NMR (400 MHz, CD ₃ OD) spectrum of 2	12
Figure S20: The ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of 2	12
Figure S21: The ¹ H-NMR (400 MHz, CD ₃ OD) spectrum of 3	13
Figure S22: The ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of 3	13
Figure S23: The ¹ H-NMR (400 MHz, CD ₃ OD) spectrum of 4	14
Figure S24: The ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of 4	14
Figure S25: The image of the Citrus hystrix	15
Figure S26: The exact search report from scifinder of 1	15
Figure S27: The 95%-98% similarity search report from scifinder of 1	16

Figure S28: The 94%-95% similarity search report from scifinder of 1	17
Table S1: ¹ H and ¹³ C NMR Data of Compound 1 and 5,6,4'-trihydroxypyranoflavone	17
S1: Synthesis of 5,6-dihydroxypyranoflavone (1)	18
S2: DPPH Radical scavenging assays	18
S3: ABTS Radical scavenging assay	18

Sample Ty Instrumen Acq Metho IRM Calibr Comment	ame pe it Nam id ration	e Status	XN-27.d Sample Instrument 1 s.m Success	Sample Name Position User Name Acquired Time DA Method	XN-27 P1-A3 6/16/2023 10:41:09 AM PCDL:m
Sample Gr Acquisition Version	oup n SW	6200 s Q-TOF	I eries TOF/6500 series B.05.01 (B5125.2)	nfo.	
User Spe	ectra				
Fragme	135	oltage	Collision Energy 0	Ionization Mode ESI	
1.6 1.4- 1.2- 1- 0.8- 0.6- 0.4-		us		338.1110 ((C20 H16 OS +H)+	
0.2	.2 336.	4 336.6 336.8	337 337.2 337.4 337.6 3 Counts vi	338.3399 37.8 338 338.2 338.4 338.6 Mass-to-Charge (m/z)	339.1129 ([C20 H16 O5]+H]+ 5 338.8 339 339.2 339.4 339.6
Peak List	1.	Abund	Eormula	Ten	
Peak List <i>m/z</i> 337.1071	z	Abund 17578.32	C20 H16 O5	(M+H)+	
Peak List m/z 337.1071 338.111	2 1 1	Abund 17578.32 4527.16	C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894	2 1 1 1	Abund 17578.32 4527.16 10685.87	Formula C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645	2 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68	Formula C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668	2 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84	Formula C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668 538.163	z 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57	Formula C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668 538.163 610.184 605 1978	2 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48	Formula C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668 538.163 610.184 695.1878 696.1919	2 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 23230.38 10024.61	C20 H16 O5 C20 H16 O5	10n ((M+H)+ ((M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668 538.163 610.184 695.1878 696.1919 697.1937	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 23230.38 10024.61 2811.25	Pormula C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 538.163 610.184 695.1878 696.1919 697.1937 Formula Ca	z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 23230.38 10024.61 2811.25 or Element	Pormula C20 H16 O5 C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668 538.163 610.184 695.1878 696.1919 697.1937 Formula Ca Element	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 23230.38 10024.61 2811.25 or Element Max 3 60	Pormula C20 H16 O5 C20 H16 O5	Ion ((N+H)+ ((N+H)+ ((N+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 538.163 610.184 695.1878 696.1919 697.1937 Formula Ca Element C H	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 23230.38 10024.61 2811.25 or Element Max 3 60 0 150	C20 H16 O5 C20 H16 O5 C20 H16 O5	Ion (N+H)+ (N+H)+	
Peak List m/z 337.1071 338.1107 338.01994 536.1645 537.1668 538.163 610.184 695.1878 695.1878 695.1919 697.1937 Formula CZ Element C H O	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 2230.38 10024.61 2811.25 Max 3 0 150 0 0 0	C20 H16 O5 C20 H16 O5 C20 H16 O5	Ion (M+H)+ (M+H)+	
Peak List m/z 337.1071 338.111 359.0894 536.1645 537.1668 538.163 610.184 696.1919 697.1937 Formula Ca Element C H O Formula Ca	z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 5552.48 23230.38 10024.61 281.125 or Element Max 3 60 0 0 0 0 0 20 or Results	Pormula C20 H16 OS C20 H16 OS	Ion ((N+H))+ ((N+H))+	
Peak List m/z 337.1071 338.111 338.113 530.0894 536.1645 537.1668 537.1668 538.163 610.184 695.1878 696.1919 697.1937 Formula Ca Element C H H O Formula Ca Formula Ca	z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Abund 17578.32 4527.16 10685.87 4051.68 3579.84 2864.57 23230.38 10024.61 2811.25 2811.25 0 150 0 150 0 150 0 150 0 150 0 150 0 150	Pormula C20 H16 O5 C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	Ion (M+H)+ (M+H)+ (M+H)+ M2 M2 M2	Diff. (mDa) Diff. (ppm) DBE

Figure S1: The HR-ESI-MS spectrum of 1

Sample Name	Xn27	Position InjPosition	P1-F9	Instrument Name SampleType	Instrument 1 Sample	User Name IRM Calibration Status Acquired Time	Success 4/14/2023 10:
Inj voi Data Filename	Xn27.d	ACQ Method	s.m	Comment		All shares and shares a	
to 5 FES	Scan (0.14-0.1	7 min, 3 Scans) Frag=	135.0V Xn27.d	Subtract (2)			
1.65-							
1.6-							
1.55-							
1.5-							
1.45-			337				
1.4-							
1.35-			10				
1.3-			States and the second second				
1.25-							
1.2-							
1.15-			and the second second				
1.1-			and the second second				
1.05-							
1-			Statistics for				the second of
0.95-							
0.9-			STATE OF STREET, ST				
0.85-			Dr. Contractor				
0.8-							
0.75-							
0.7-			10 hours and a				
0.65-			Salar and				
0.6-			A CEPPLE				
0.55-			a state in				and the second
0.5-							
0.45-							
0.4-							
0.35							11 10 CT 12
0.3-			12 A 14			205	and the second
0.25-			Sector States			695	and and a state of the
0.2-			250				
0.15-	169		389	524		and the second se	and the second second
0.1-	20	09 052	1 1 20			711 795	861
0.05- 1	24 188,	205 31	3 39	422 448 491	1 1 1 1 1 1 1 1 1 1 1 1	710 705 705 775 800	925 950 875

Figure S2: The ESI-MS spectrum of 1

Figure S4: The ¹H-NMR (400 MHz, CDCl₃) spectrum of 1

Figure S6: The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1

© 2023 ACG Publications. All rights reserved.

Figure S9: The ¹³C NMR (100 MHz, DMSO-*d*6) spectrum of 1 (From $\delta_{\rm C}$ 120 to 150 ppm)

Figure S10: The HSQC spectrum of 1

© 2023 ACG Publications. All rights reserved.

Figure S11: The HSQC spectrum of **1** (From $\delta_{\rm C}$ 100 to140 ppm)

Figure S12: The ¹H-¹H COSY spectrum of 1

Figure S13: The ¹H-¹H COSY of H-1"/H-2", H-2'(6')/H-3'(5'), and H-2'(6')/H-4' of 1

Figure S14: The HMBC spectrum of 1

© 2023 ACG Publications. All rights reserved.

Figure S15: The HMBC correlations of 5-OH to C-5, C-6 and C-10 of 1

Figure S16: The HMBC correlations of $CH_3-4"/5"$ to C-3" and C-2" of 1

Figure S17: The HMBC correlations of CH-1" to C-7, C-8 and C-9 of 1

Figure S18: The HMBC correlations of CH-3 to C-2, C-4, C-10 and C-1' of 1

Figure S22: The ¹³C NMR (100 MHz, CD₃OD) spectrum of 3

Figure S24: The ¹³C NMR (100 MHz, CD₃OD) spectrum of 4

Figure S25: The image of the Citrus hystrix

The herbarium number of *Citrus hystrix* registered at https://sweetgum.nybg.org/science/ih/ was 3787305.

Structure Match	1 Result			
As Drawn (0)	□ 1 •••			
Substructure (1)	2166018-83-1 د			
Similarity (85K)	the contract			
Analyze Structure Precision	HO HO O			
Chemscape Analysis	C ₂₀ H ₁₆ O ₆			
Visually explore structure similarity with a powerful new tool. Learn more about Chemscape.	5,6-Dihydroxy-2-(4-hydroxyphenyl)-8,8- dimethyl-4 <i>H</i> ,8 <i>H</i> -benzo[1,2- <i>b</i> :3,4- <i>b</i> '] dipyran			
Create Chemscape Analysis	2 References Reactions Suppliers			

Figure S26: The exact search report from scifinder of 1

Structure Match	Filtering: Similarity	: 95-98 × Nu	mber of Compo	nents: 1 🗙				Clear All Filters
As Drawn (0)	3 Results					Sort: R	elevance 👻	View: Partial 🗸
Substructure (1)	□ 1	97 •••	2		97 •••	3		95 •••
Similarity (85K)	2166018-83-1	к И	1174388-(09-0	۲ لا	119309-02	2-3	۲ لا
Chemscape Analysis Visually explore structure similarity with a powerful new tool. Learn more about Chemscape.		Ф	HO		\bigcirc	t		он
Create Chemscape Analysis	C ₂₀ H ₁₆ O ₆ 5,6-Dihydroxy-2-(4-hyd dimethyl-4 <i>H</i> ,8 <i>H</i> -benzo[roxyphenyl)-8,8- 1,2- <i>b</i> :3,4- <i>b</i> ']	C ₂₀ H ₁₆ O ₄ 6-Hydroxy-8 benzo[1,2- <i>b</i> :	,8-dimethyl-2- 3,4- <i>b</i> ']dipyran	phenyl-4 <i>H</i> ,8 <i>H-</i> -4-one	C ₂₀ H ₁₆ O ₅ Atalantoflavo	one	
Filter Behavior	dipyran							
Filter by Exclude	2 References Reaction	s Suppliers	2 References	▲ 0 Reactions	2 Suppliers	40 References	▲ 3 Reactions	19 Suppliers
✓ Search Within Results								

Figure S27: The 95%-98% similarity search report from scifinder of 1

Figure S28: The 94%-95% similarity search report from scifinder of 1

Table S1: 1H and 13C NMR Data of Compound 1 in DMSO-d6 and 5,6,4'-
trihydroxypyranoflavone in CDCl3

5,6-dihydroxypyranoflavone (1)

5,6,4'-trihydroxypyranoflavone

No		1	5,6,4'-trihydroxypyranoflavone		
INO.	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	
2	162.9 s	-	159.4 s	-	
3	104.6 d	6.93 s	99.4 d	6.21 s	
4	182.4 s	-	175.4 s	-	
5	147.3 s	-	160.1 s	-	
6	129.8 s	-	135.4 s	-	
7	147.5 s	-	150.9 s	-	
8	101.2 s	-	101.3 s	-	
9	144.2 s	-	146.0 s	-	
10	104.7 s	-	103.7 s	-	
1'	130.8 s	-	122.4 s	-	
2'/6'	127.3 d	8.03 overlapped	129.4 d	8.04 d (8.8)	
3'/5'	129.2 d	7.53 overlapped	115.6 d	6.92 d (8.8)	
4'	132.0 d	7.53 overlapped	158.8 d	-	
1"	114.7 d	6.86 d (8.9)	114.7 d	6.75 d (9.6)	
2"	128.4 d	5.76 d (8.9)	127.2 d	5.56 d (10.0)	
3"	78.0 s	-	78.1 s	-	
4"/5"	27.6 q	1.41 s	28.0 q	1.41 s	
5-OH	-	12.77 s		-	

S1: Synthesis of 5,6-dihydroxypyranoflavone (1)

Baicalein (1 equiv, 135 mg, 0.5 mmol) and 3-methyl-2-butenal (2 equiv, 84 mg, 1.0 mmol) were dissolved in anhydrous pyridine (2 mL), and the reaction was performed by stirring the mixture under nitrogen at 110 °C for 10 hours. Then, the solution was reduced under a vacuum. The resulting mixture was directly subjected to silica gel column eluted with petroleum ether/ethyl acetate (ratio 8:2) to afford compound 1 as a yellow solid (59 mg, 0.175 mmol, 35%).

S2: DPPH Radical Scavenging Assay

The DPPH assay was carried out as previously described [1-4]. L-Ascorbic acid was used as positive controls, and reaction mixtures containing 100 μ L of 200 μ M DPPH solution and 100 μ L of 2-fold serial dilutions of the sample with concentrations in the range of 160, 80, 40, 20, 10, 5, and 2.5 μ M were placed in a 96-well microplate and incubated at 37 °C for 30 min. After incubation, the absorbance was read at 517 nm by an Emax precision microplate reader, and the mean of three readings was obtained. Scavenging activity was calculated by the following equation:

Level of inhibition (%) = $[1 - (A_{control} - A_{sample})/A_{control}] \times 100\%$

The IC₅₀ value was obtained through extrapolation from linear regression analysis and denoted the concentration of sample required to scavenge 50% of DPPH radicals.

S3: ABTS Radical Scavenging Assay

The ABTS assay was carried out as previously described [1-4] The ABTS⁺ radical was obtained by the reaction of a 6 mM ABTS solution in water with potassium persulfate (2.45 mM) without light at 25 °C for 16 h before use. The absorbance of the ABTS⁺ dilution was regulated with ethanol to 0.70 ± 0.02 at 734 nm at 25 °C. L-Ascorbic acid was used as positive controls, and reaction mixtures containing 100 μ L of ABTS solution and 2-fold serial dilutions of the sample with concentrations in the range of 30, 15, 7. 5, 3. 75, 1.875, and 0.9375 μ M were placed in a 96-well microplate and incubated at 25 °C for 30 min. After incubation, the absorbance was read at 734 nm by an Emax precision microplate reader, and the mean of three readings was obtained. Scavenging activity was calculated by the following equation:

Level of inhibition (%) = $[1 - (A_{control} - A_{sample})/A_{control}] \times 100\%$

The IC_{50} value was obtained through extrapolation from linear regression analysis and denoted the concentration of sample required to scavenge 50% of ABTS radicals.

References

- H.M. Zhang, C.F. Wang, S.M. Shen, G.L. Wang, P. Liu, Z.M. Liu, Y.Y. Wang, S.S. Du, Z.L. Liu and Z.W. Deng (2012). Antioxidant phenolic compounds from Pu-erh tea, *Molecules* 17, 14037-14045.
- [2] A. Ertas, H. Cakirca, I. Yener, M. Akdeniz, M. Firat, M, G. Topcu and U. Kolak (2021). Bioguided Isolation of Secondary Metabolites from *Salvia cerino-pruinosa* Rech. f. var. *cerino-pruinosa*, *Rec. Nat. Prod.* 15, 585-592
- [3] H. Kiziltas, A.C. Gören, Z. Bingöl, S. H. Alwasel and I. Gulcin (2021). Anticholinergic, antidiabetic

and antioxidant activities of *Ferula orientalis* L. Determination of Its Polyphenol Contents by LC-HRMS, *Rec. Nat. Prod.* **15**, 513-528.

[4] H. Kiziltas, Z. Bingöl, A.C. Gören, S. M. Pinar, S.H. Alwasel, and İ. Gülçin (2021). LC-HRMS profiling of phytochemicals, antidiabetic, anticholinergic and antioxidant activities of evaporated ethanol extract of Astragalus brachycalyx Fischer, *J. Chem. Metrol.* 15, 135-151.