Supporting Information

J. Chem. Metrol. 17:2 (2023) 238-248

Gradient reversed-phase HPLC method for the quantitation of azelnidipine and chlorthalidone in a fixed-dose synthetic mixture.

Juhi Raimalani¹ and Rajendra Kotadiya¹*

¹ Department of Pharmceutical Quality Assurance, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Dist-Anand, Gujarat, India, Pin. 388421

Table of Contents	Page
Figure S1: Specificity studies	2
Figure S2: Peak purity index studies	3
Figure S3: Calibration curves	4
Figure S4: AGREE score for greenness assessment	5

Figure S1: Specificity studies

© 2023 ACG Publications. All rights reserved.

Figure S3: Calibration curves

© 2023 ACG Publications. All rights reserved.

Analytical Greenness report sheet

06/12/2023 11:20:21

Criteria	Score	Weight
1. Direct analytical techniques should be applied to avoid sample treatment.	0.6	2
2. Minimal sample size and minimal number of samples are goals.	1.0	2
3. If possible, measurements should be performed in situ.	1.0	2
4. Integration of analytical processes and operations saves energy and reduces the use of reagents.	1.0	2
5. Automated and miniaturized methods should be selected.	0.75	2
6. Derivatization should be avoided.	1.0	2
7. Generation of a large volume of analytical waste should be avoided, and proper management of analytical waste should be provided.	0.29	2
8. Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.	0.68	2
9. The use of energy should be minimized.	0.5	2
10. Reagents obtained from renewable sources should be preferred.	1.0	2
11. Toxic reagents should be eliminated or replaced.	0.16	2
12. Operator's safety should be increased.	0.6	2

Figure S4: AGREE score for greenness assessment

© 2023 ACG Publications. All rights reserved.