Supporting Information

Rec. Nat. Prod. 19:3 (2025) 291-295

A New Clerodane-type Diterpene from *Conyza blinii* Zeyu Hou^{#1, 2}, Lang Huang^{#3}, Shiji Xiao^{*1, 2, 3}

¹Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China

²Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou,

563000, China

³Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563000, China

Table of Contents	Page			
Figure S1: ¹ H NMR (400 MHz, CDCl ₃) of 1	2			
Figure S2: ¹ H NMR (400 MHz, CDCl ₃) of 1 (From $\delta_{\rm H}$ 4.00 ppm to $\delta_{\rm H}$ 6.30 ppm)				
Figure S3: ¹ H NMR (400 MHz, CDCl ₃) of 1 (From $\delta_{\rm H}$ 0.70 ppm to $\delta_{\rm H}$ 2.80 ppm)	3			
Figure S4: ¹³ C NMR (100 MHz, CDCl ₃) of 1	3			
Figure S5: COSY spectrum of 1	4			
Figure S6: HSQC spectrum of 1	4			
Figure S7: HSQC spectrum of 1 (From $\delta_{\rm C}$ 70.0 ppm to $\delta_{\rm C}$ 127.0 ppm)	5			
Figure S8: HMBC spectrum of 1	5			
Figure S9: HMBC spectrum of 1 (From $\delta_{\rm C}$ 40.0 ppm to $\delta_{\rm C}$ 180.0 ppm)	6			
Figure S10: NOESY spectrum of 1	6			
Figure S11: NOESY spectrum of 1 (expand)	7			
Figure S12: HR-ESI-MS spectrum of 1	7			
Figure S13: ¹ H-NMR (600 MHz, CDCl ₃) of 2	8			
Figure S14: ¹ H-NMR (600 MHz, CDCl ₃) of 2 (From $\delta_{\rm H}$ 4.00 ppm to $\delta_{\rm H}$ 6.50 ppm)	8			
Figure S15: ¹ H-NMR (600 MHz, CDCl ₃) of 2 (From $\delta_{\rm H}$ 0.80 ppm to $\delta_{\rm H}$ 3.80 ppm)	9			
Figure S16: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 2	9			
Figure S17: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 2 (From $\delta_{\rm C}$ 10.0 ppm to $\delta_{\rm C}$ 75.0 ppm)	10			
Figure S18: COSY spectrum of 2	10			
Figure S19: HSQC spectrum of 2	11			
Figure S20: HSQC spectrum of 2 (From $\delta_{\rm C}$ 10.0 ppm to $\delta_{\rm C}$ 75.0 ppm)	11			
Figure S21: HMBC spectrum of 2	12			
Figure S22: HMBC spectrum of 2 (From $\delta_{\rm C}$ 60.0 ppm to $\delta_{\rm C}$ 175.0 ppm)	12			
Figure S23: NOESY spectrum of 2	13			
Figure S24: NOESY spectrum of 2 (expand)	13			
Figure S25: HR-ESI-MS spectrum of 2	14			
Figure S26: Compound similarity assessment of 1	15			
Table S1 NMR data comparison of 1 and 4 in CDCl ₃ (600/150MHz, δ in ppm, J in Hz)	16			

[#] These authors contributed equally to this work.

^{*} Corresponding author: E-mail: xiaoshiji84@163.com (Shiji Xiao).

^{© 2025} ACG Publications. All rights reserved.

Figure S2: ¹H NMR (400 MHz, CDCl₃) of **1** (From $\delta_{\rm H}$ 4.00 ppm to $\delta_{\rm H}$ 6.30 ppm)

-0

-100

Figure S3: ¹H NMR (400 MHz, CDCl₃) of **1** (From $\delta_{\rm H}$ 0.70 ppm to $\delta_{\rm H}$ 2.80 ppm)

Figure S4: ¹³C NMR (100 MHz, CDCl₃) of 1

© 2025 ACG Publications. All rights reserved.

Figure S5: COSY spectrum of 1

Figure S6: HSQC spectrum of 1

Figure S7: HSQC spectrum of **1** (From $\delta_{\rm C}$ 70.0 ppm to $\delta_{\rm C}$ 127.0 ppm)

Figure S8: HMBC spectrum of 1

Figure S9: HMBC spectrum of 1 (From $\delta_{\rm C}$ 40.0 ppm to $\delta_{\rm C}$ 180.0 ppm)

Figure S10: NOESY spectrum of 1

Figure S12: HR-ESI-MS spectrum of 1

Figure S13: ¹H-NMR (600 MHz, CDCl₃) of 2

Figure S14: ¹H-NMR (600 MHz, CDCl₃) of 2 (From $\delta_{\rm H}$ 4.00 ppm to $\delta_{\rm H}$ 6.50 ppm)

Figure S15: ¹H-NMR (600 MHz, CDCl₃) of **2** (From $\delta_{\rm H}$ 0.80 ppm to $\delta_{\rm H}$ 3.00 ppm)

Figure S16: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 2

Figure S17: ¹³C-NMR (150 MHz, CDCl₃) spectrum of **2** (From $\delta_{\rm C}$ 10.0 ppm to $\delta_{\rm C}$ 75.0 ppm)

Figure S18: COSY spectrum of 2

Figure S19: HSQC spectrum of 2

Figure S20: HSQC spectrum of 2 (From δ_C 10.0 ppm to δ_C 75.0 ppm)

Figure S21: HMBC spectrum of 2

Figure S22: HMBC spectrum of **2** (From δ_C 60.0 ppm to δ_C 175.0 ppm)

Figure S24: NOESY spectrum of 2 (expand)

Figure S25: HR-ESI-MS spectrum of 2

Figure S26: Compound similarity assessment of 1

	$\begin{array}{c} 20 \\ 1 \\ 0 \\ 2 \\ 10 \\ 19 \\ 19 \\ 6 \\ HO \\ 18 \\ 0 \\ 22 \\ 0 \end{array}$	13 15 0 14		
No.	1		4	
-	$\delta_{ m H} \left(J ext{ in Hz} ight)$	$\delta_{ m C}$	$\delta_{ m H}$ (<i>J</i> in Hz)	$\delta_{ m C}$
1	2.22, dd (18.3, 4.8);	25.1		
1	2.69, dd (18.3, 4.2)	55.1		21.1
2		199.7	4.21, m	63.8
3	6.22, s	124.8	5.79,d (4.2)	124.4
4		168.7		147.4
5		42.5		41.0
6	2.02, m; 1.44, m	30.8		31.2
7	1.49, m	26.6		26.8
8	1.50, m	36.2		38.1
9		38.8		36.0
10	2.04, m	45.8		40.8
11	1.57, m	34.7		34.8
12	2.23, m; 2.10, m	21.8		21.6
13		170.0		172.6
14	5.81, s	115.3	5.75, s	114.2
15		174.0		174.9
16	4.71, s	73.1	4.69, s	73.5
17	0.85, d (6.0)	15.6	0.76, d (6.0)	15.6
18	4.41, d (17.2); 4.26, d (17.2)	61.8	4.13, d (14.2); 4.04, d (14.2)	62.2
19	4.55, m; 4.23, m	66.4	4.45, d (11.3); 4.01, d (11.3)	66.9
20	0.94, s	17.9	0.75, s	18.2
21		171.0		171.0
22	1.96, s	20.9	1.94, s	21.0

Table S1: NMR data comparison of **1** and **4** in CDCl₃ (600/150MHz, δ in ppm, *J* in Hz)