Supporting Information

Rec. Nat. Prod. 19:3 (2025) 296-301

Structures and Biological Evaluation of 8,4'-oxyneolignans from

the roots of Platycodon grandifloras

Lang Ding 1 , Yang Yu 1,2,3 , Ling Zhang 1 , Shuang-Ying Gui *1 , Ju-Tao Wang *1,2,3 , and Bai-Xiang Cai *1,2

Table of Contents	Pages										
Figure S1-1: HR-ESI-MS spectrum of 1.	3										
Figure S1-2: ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of 1 .	3										
Figure S1-3: ¹³ C-NMR and DEPT (150 MHz, CD ₃ OD) spectrum of 1.											
Figure S1-4: HSQC spectrum of 1. Figure S1 5: HSQC spectrum of 1 (From δ ₁ , 3.0 ppm to δ ₂ , 8.0 ppm)											
Figure S1-5: HSQC spectrum of 1 (From $\delta_{\rm H}$ 3.0 ppm to $\delta_{\rm H}$ 8.0 ppm).											
Figure S1-6: HMBC spectrum of 1.											
Figure S1-7: HMBC spectrum of 1 (From $\delta_{\rm H}$ 3.4 ppm to $\delta_{\rm H}$ 7.6 ppm).											
Figure S1-8: ¹ H- ¹ H COSY spectrum of 1.											
Figure S1-9: ROESY spectrum of 1.											
Figure S1-10: ECD spectra for compound 1.											
Figure S1-11: Scifinder search report of 1.											
Figure S2-1: HR-ESI-MS spectrum of 2.											
Figure S2-2: ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of 2.											
Figure S2-3: ¹³ C-NMR and DEPT (150 MHz, CD ₃ OD) spectrum of 2 .											
Figure S2-4: HSQC spectrum of 2.											
Figure S2-5: HSQC spectrum of 2 (From $\delta_{\rm H}$ 3.5 ppm to $\delta_{\rm H}$ 8.0 ppm).											
Figure S2-6: HMBC spectrum of 2.											
Figure S2-7: HMBC spectrum of 2 (From $\delta_{\rm H}$ 3.6 ppm to $\delta_{\rm H}$ 8.2 ppm).											
Figure S2-8: ¹ H- ¹ H COSY spectrum of 2											
Figure S2-9: ROESY spectrum of 2.	14										
Figure S2-10: ECD spectra for compound 2.	14										
Figure S2-11: Scifinder search report of 2.	15										
Table S2-12: The NMR spectroscopic data for 1 and 2 with similar compound 1' (δ in ppm	16										
and J in Hz)	16										
Figure S3-1: HR-ESI-MS spectrum of 3.	17										
Figure S3-2: ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of 3.	18										
Figure S3-3: ¹³ C-NMR and DEPT (150 MHz, CD ₃ OD) spectrum of 3 .	18										
Figure S3-4: HSQC spectrum of 3.	19										

¹ School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China

² Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, PR China

³ Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, PR China

^{*}Corresponding authors: E- Mail: guishy0520@ahtcm.edu.cn (Shuang-Ying Gui); wjt591@ahtcm.edu.cn (Ju-Tao Wang); caibx@ahtcm.edu.cn (Bai-Xiang Cai).

Figure S3-5: HSQC spectrum of 3 (From $\delta_{\rm H}$ 3.5 ppm to $\delta_{\rm H}$ 8.0 ppm).	19
Figure S3-6: HMBC spectrum of 3.	20
Figure S3-7: HMBC spectrum of 3 (From $\delta_{\rm H}$ 3.0 ppm to $\delta_{\rm H}$ 7.5 ppm).	20
Figure S3-8: ¹ H- ¹ H COSY spectrum of 3.	21
Figure S3-9: ROESY spectrum of 3.	21
Figure S3-10: ECD spectra for compound 3.	22
Figure S3-11: Scifinder search report of 3.	23
Figure S4-1: HR-ESI-MS spectrum of 4.	24
Figure S4-2: ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of 4.	25
Figure S4-3: ¹³ C-NMR and DEPT (150 MHz, CD ₃ OD) spectrum of 4.	25
Figure S4-4: HSQC spectrum of 4.	26
Figure S4-5: HSQC spectrum of 4 (From $\delta_{\rm H}$ 1.5 ppm to $\delta_{\rm H}$ 7.5 ppm).	26
Figure S4-6: HMBC spectrum of 4.	27
Figure S4-7: HMBC spectrum of 4 (From $\delta_{\rm H}$ 1.0 ppm to $\delta_{\rm H}$ 7.6 ppm).	27
Figure S4-8: ¹ H- ¹ H COSY spectrum of 4.	28
Figure S4-9: ROESY spectrum of 4.	28
Figure S4-10: ECD spectra for compound 4.	29
Figure S4-11: Scifinder search report of 4.	30
Table S4-12: The NMR spectroscopic data for 3 and 4 with similar compound 2' (δ in ppm	31
and J in Hz)	21
S5-1: General Experimental Procedures.	31

Meas. m/z	Pred. m/z	Df. ppm	Formula	lon
375.1089	375.1085	1.0664	C ₁₉ H ₂₀ O ₈	[M-H] ⁻

Figure S1-1: HR-ESI-MS spectrum of 1.

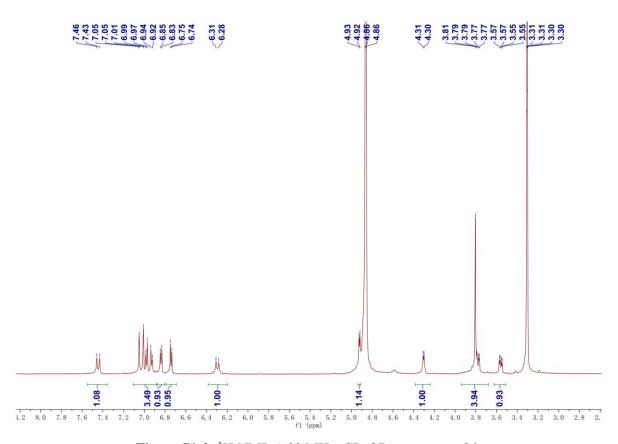


Figure S1-2: ¹H-NMR (600 MHz, CD₃OD) spectrum of 1.

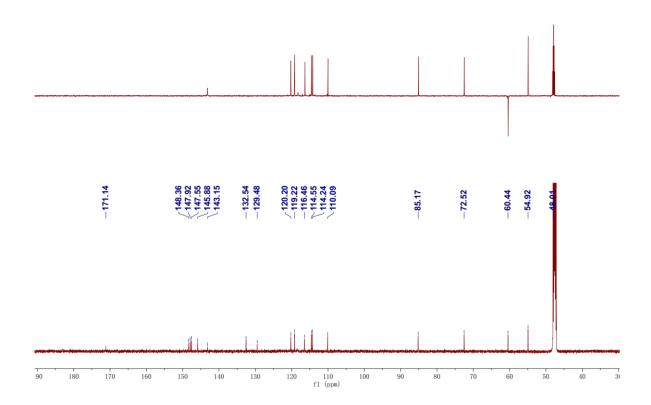


Figure S1-3: ¹³C-NMR and DEPT (150 MHz, CD₃OD) spectrum of 1.

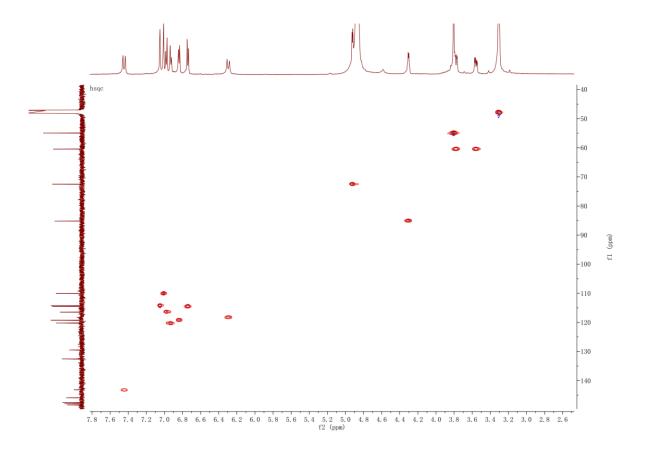
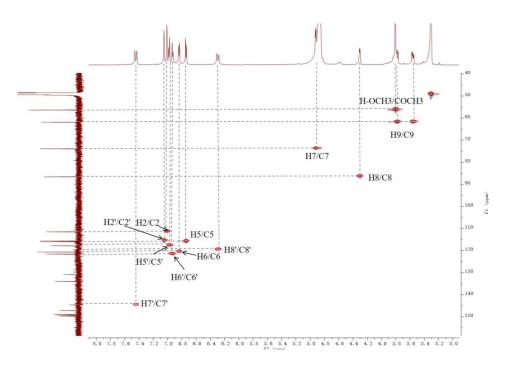



Figure S1-4: HSQC spectrum of 1.

Figure S1-5: HSQC spectrum of **1** (From $\delta_{\rm H}$ 3.0 ppm to 8.0 ppm).

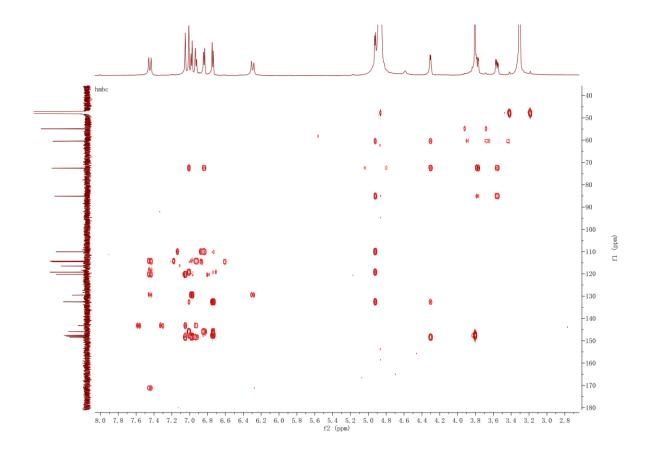
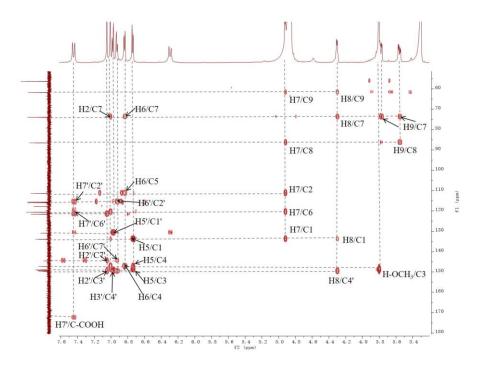
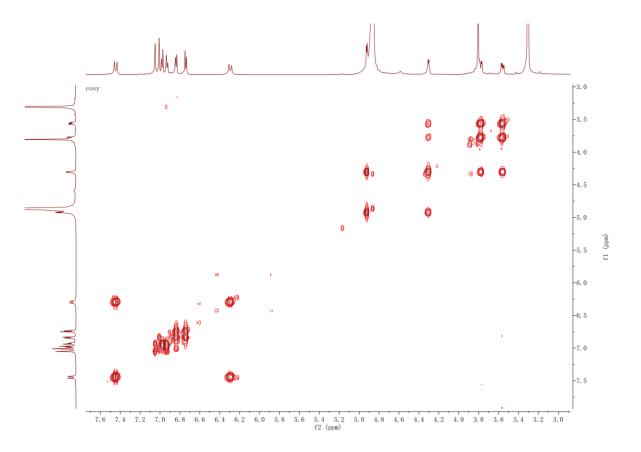




Figure S1-6: HMBC spectrum of 1.

Figure S1-7: HMBC spectrum of **1** (From $\delta_{\rm H}$ 3.4 ppm to 7.6 ppm).

Figure S1-8: ¹H-¹H COSY spectrum of **1**.

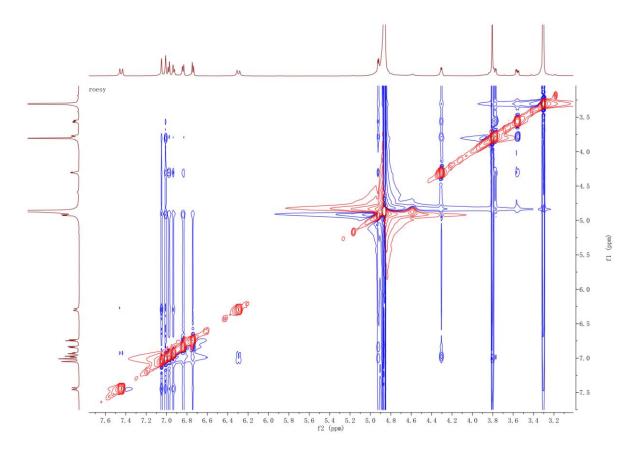


Figure S1-9: ROESY spectrum of 1.

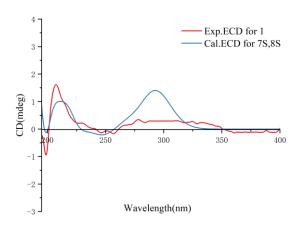
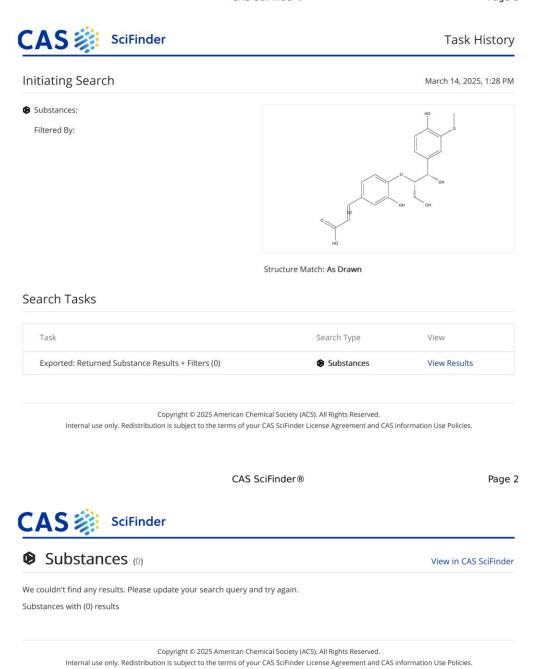
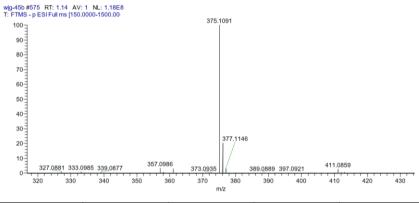
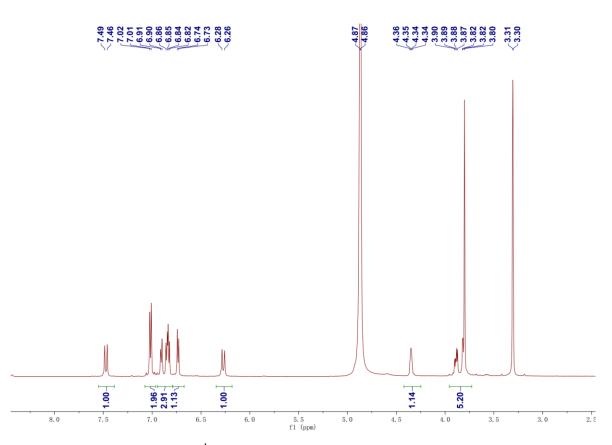
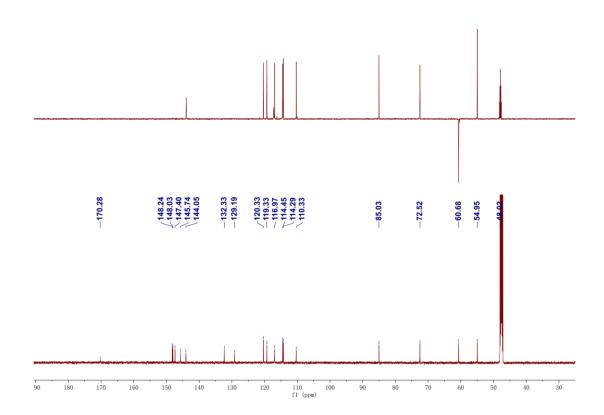


Figure S1-10: ECD spectra for compound 1.


Figure S1-11: Scifinder search report of 1.


 Meas. m/z
 Pred. m/z
 Df. ppm
 Formula
 Ion

 375.1091
 375.1085
 1.5995
 C₁₉H₂₀O₈
 [M-H]⁻

Figure S2-1: HR-ESI-MS spectrum of 2.

Figure S2-2: ¹H-NMR (600 MHz, CD₃OD) spectrum of **2**.

Figure S2-3: ¹³C-NMR and DEPT (150 MHz, CD₃OD) spectrum of **2**.

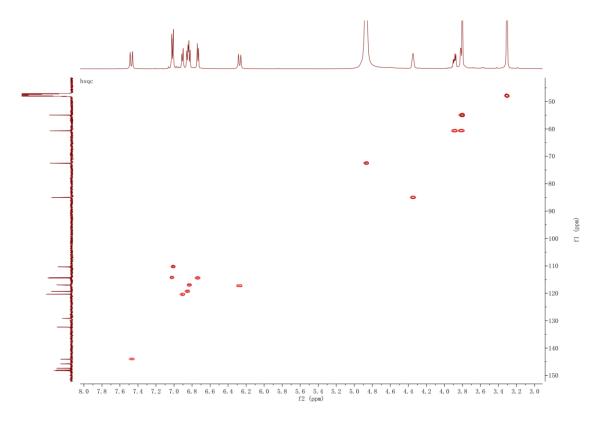
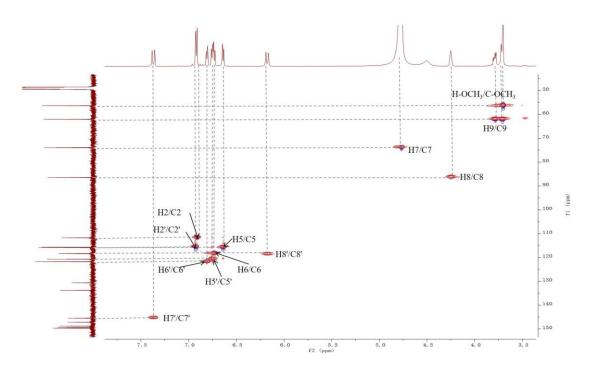



Figure S2-4: HSQC spectrum of 2.

Figure S2-5: HSQC spectrum of **2** (From $\delta_{\rm H}$ 3.5 ppm to 8.0 ppm).

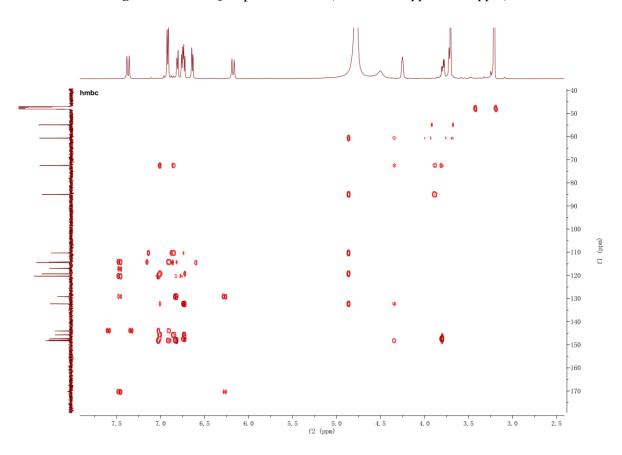
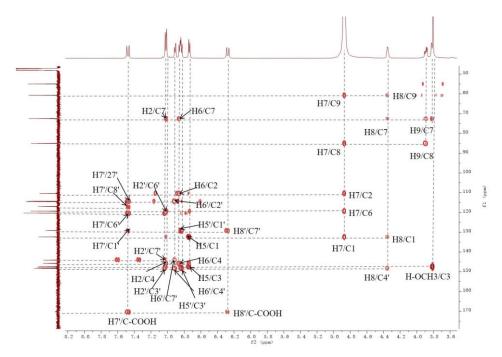



Figure S2-6: HMBC spectrum of 2.

Figure S2-7: HMBC spectrum of **2** (From $\delta_{\rm H}$ 3.6 ppm to 8.2 ppm).

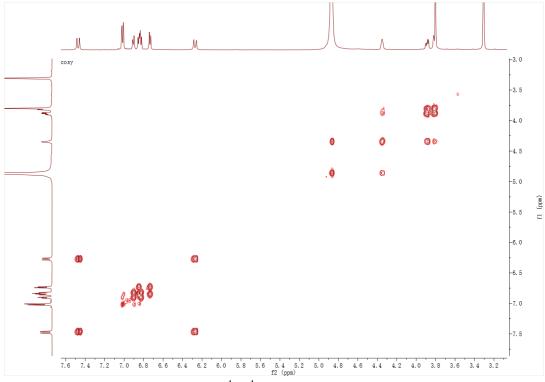


Figure S2-8: ¹H-¹H COSY spectrum of 2.

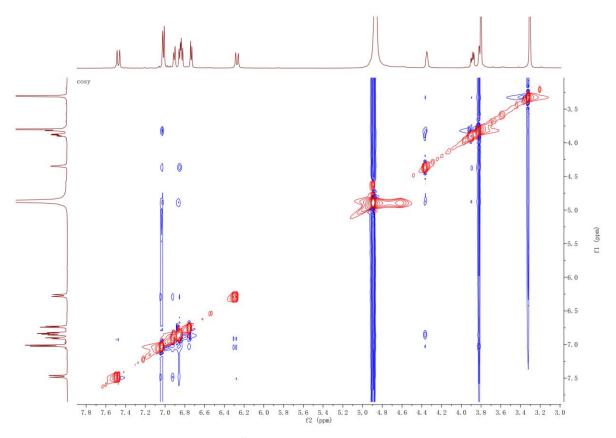


Figure S2-9: ROESY spectrum of 2.

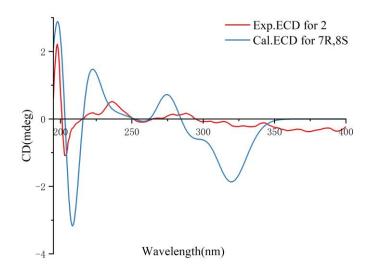


Figure S2-10: ECD spectra for compound 2.

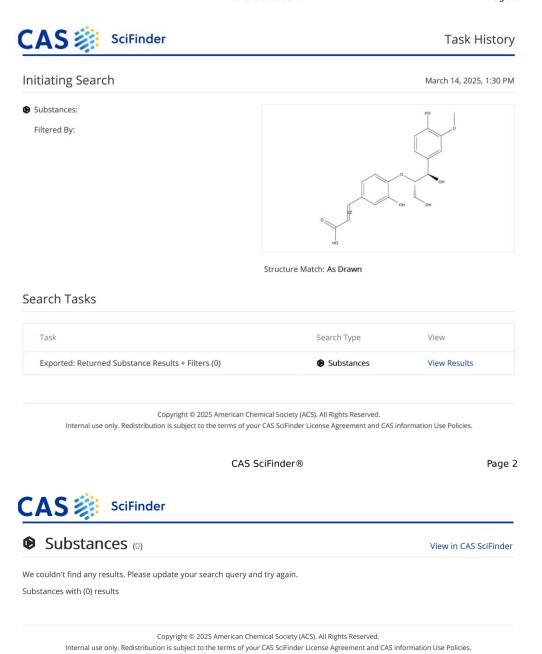
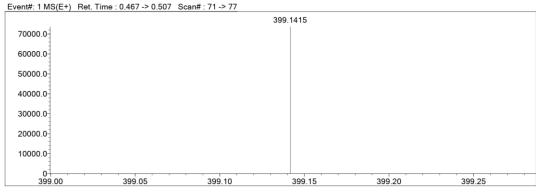
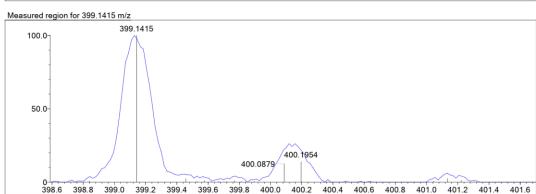


Figure S2-11: Scifinder search report of 2.

Table S2-12: The NMR spectroscopic data for **1** and **2** with similar compound **1'** (δ in ppm and J in Hz)

Position	1		2		1'			
Position	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$		
1	-	132.6	-	132.3	-	134.0		
2	7.01 (s)	110.6	7.01 (s)	110.3	7.01 (d, 1.8)	111.5		
3	-	147.5	-	147.4	-	149.0		
4	-	145.9	-	145.7	-	147.4		
5	6.74 (d, 8.1)	114.5	6.74 (d, 8.1)	114.4	6.74 (d, 8.3)	116.0		
6	6.84 (d, 8.1)	119.2	6.83 (d, 8.1)	119.3	6.84 (dd, 8.3, 1.8)	120.7		
7	4.92 (d, 5.2)	72.5	4.87 (over lapped)	72.5	4.92 (d, 5.5)	74.0		
8	4.30 (m)	85.2	4.34 (m)	85.0	4.28 (m)	86.7		
9	3.56 (dd, 11.5, 4.9) 3.78 (dd, 11.9, 3.9)	60.8	3.82 (m) 3.89 (m)	60.6	3.54 (dd, 11.7, 5.3) 3.77 (dd, 11.7, 4.4)	61.9		
1'	-	129.5	-	129.2	-	131.4		
2'	7.05 (s)	114.2	7.02 (s)	114.3	7.04 (d, 2.3)	115.6		
3'	-	147.9	-	148.0	-	149.4		
4'	-	148.3	-	148.2	-	149.5		
5'	6.97 (d, 8.1)	116.4	6.82 (d, 8.1)	116.9	6.97 (d, 8.3)	118.0		
6'	6.92 (d, 8.1)	120.2	6.90 (d, 8.1)	120.3	6.92 (dd, 8.3, 1.8)	121.4		
7'	7.45 (d, 15.8)	143.1	7.48 (d, 15.8)	144.1	7.38 (d, 16.0)	143.3		
8'	6.30 (d, 15.8)	118.2	6.27 (d, 15.8)	117.2	6.31 (d, 16.0)	121.4		
9'	-	171.1	-	170.2	-	172.6		
3 -OCH $_3$	3.81 (s)	54.9	3.80 (s)	54.9	3.81 (s)	56.3		


The ¹H and ¹³C NMR data of compound **1** and **2** were recorded at 600 MHz with CD₃OD as the solvent. Similarly, the ¹H and ¹³C NMR data of compound **1'** reported in reference [1] were obtained using CD₃OD as the solvent.


Reference:

[1] M. Ichikawa, K. Ryu, J. Yoshida, N. Ide, Y. Kodera, T. Sasaoka, R. T. Rosen (2003). Identification of six phenylpropanoids from garlic skin as major antioxidants. *J. Agr. Food Chem.* **51**, 7313-7317.

Data File: E:\DATA\2024\1011\WGJ-1.lcd

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Adduct
Н	1	10	100	F	1	0	0	CI	1	0	0	Ag	1	0	0	Н
2H	1	0	0	Na	1	0	0	Co	2	0	0	Sn	2	0	0	Na
В	3	0	0	Mg	2	0	0	Cu	2	0	0	I	3	0	0	
С	4	5	100	Si	4	0	0	Se	2	0	0	lr	3	0	0	
N	3	0	10	Р	3	0	0	Br	1	0	0	Pt	2	0	0	
0	2	0	30	S	2	0	0	Pd	2	0	0					
Error Margin (ppm): 10 DBE Range: not fixed Electron lons: both HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 10000 MSn Iso RI (%): 75.00 MSn Logic Mode: OR Max Results: 30																

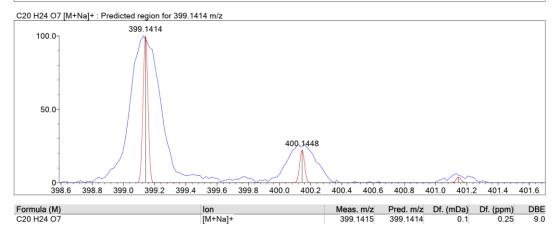
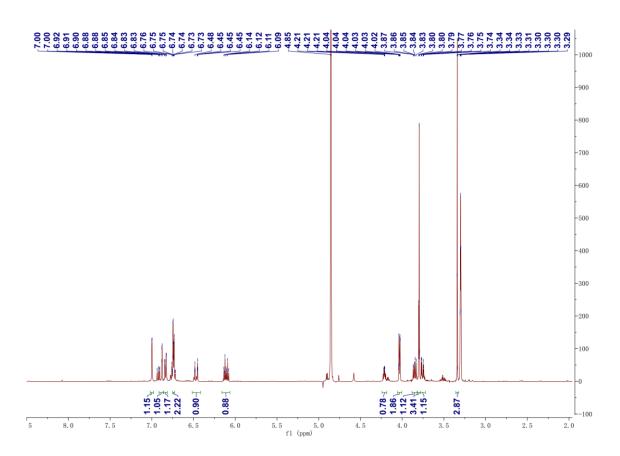



Figure S3-1: HR-ESI-MS spectrum of 3.

Figure S3-2: ¹H-NMR (600 MHz, CD₃OD) spectrum of **3**.

Figure S3-3: ¹³C-NMR and DEPT (150 MHz, CD₃OD) spectrum of **3**.

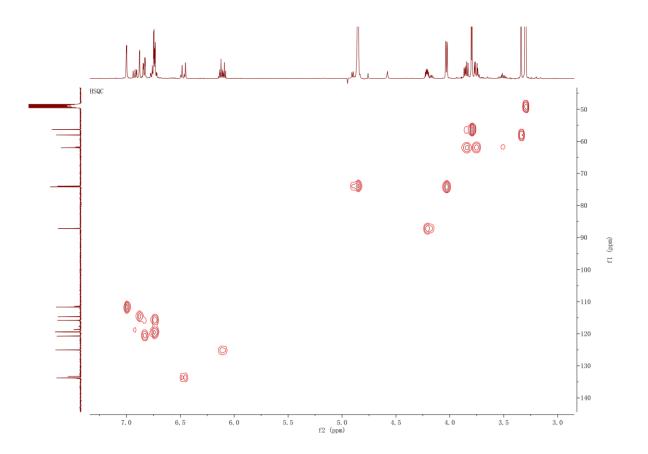
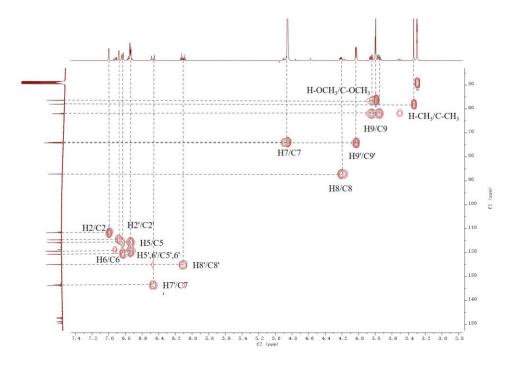



Figure S3-4: HSQC spectrum of 3.

Figure S3-5: HSQC spectrum of **3** (From $\delta_{\rm H}$ 2.8 ppm to 7.4 ppm).

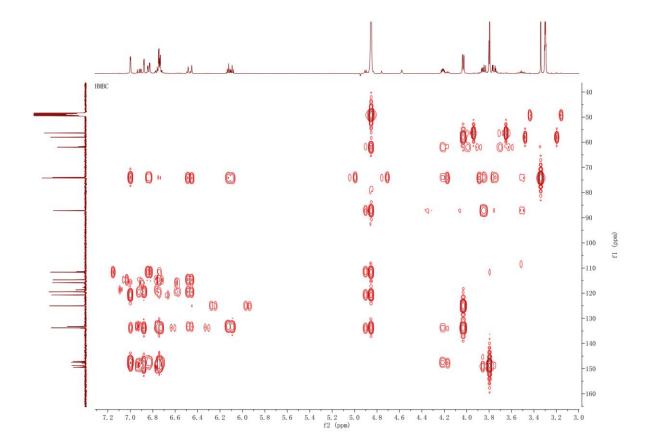
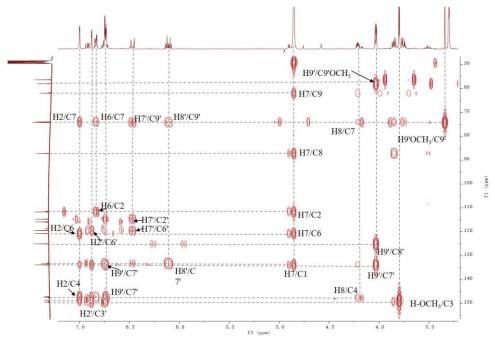



Figure S3-6: HMBC spectrum of 3.

Figure S3-7: HMBC spectrum of **3** (From $\delta_{\rm H}$ 3.0 ppm to 7.5 ppm).

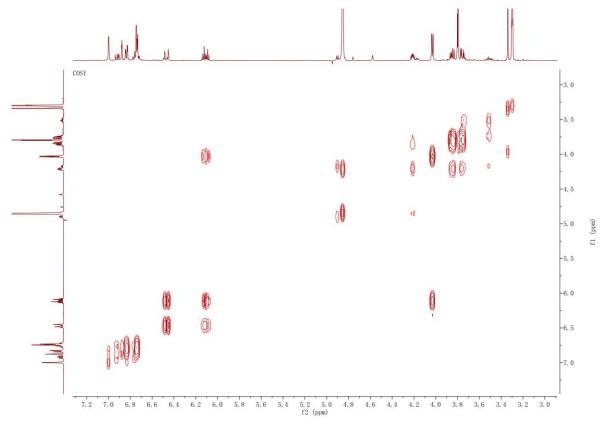


Figure S3-8: ¹H-¹H COSY spectrum of 3.

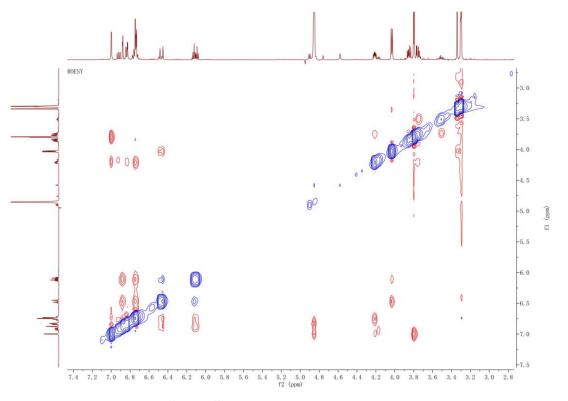


Figure S3-9: ROESY spectrum of 3.

 $\ensuremath{\mathbb{O}}$ 2025 ACG Publications. All rights reserved.

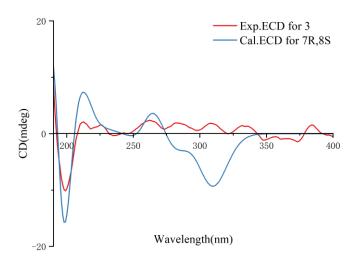


Figure S3-10: ECD spectra for compound 3.

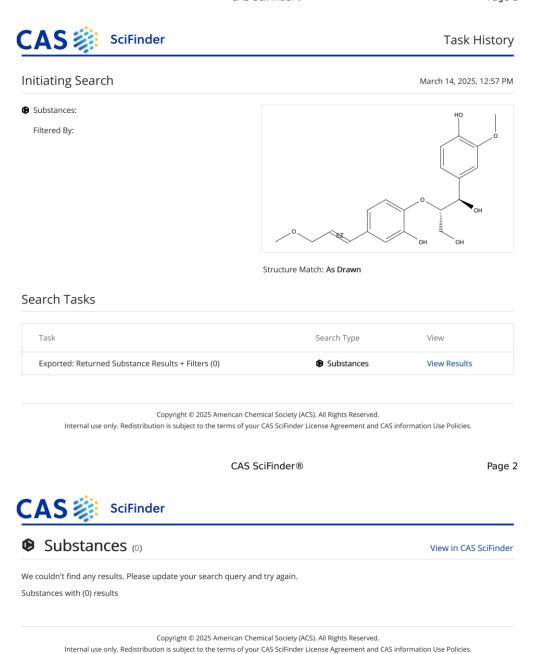
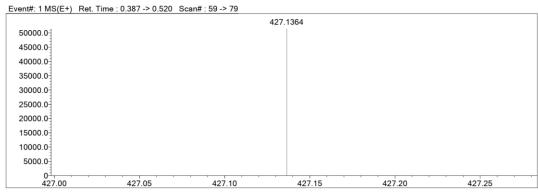
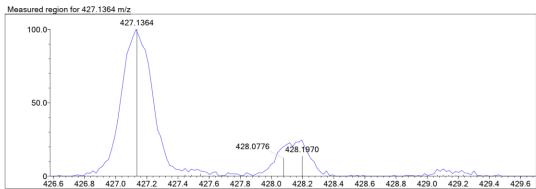




Figure S3-11: Scifinder search report of 3.

Data File: E:\DATA\2024\1011\WGJ-2.lcd

Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Elmt	Val.	Min	Max	Use Adduct
Н	1	10	100	F	1	0	0	CI	1	0	0	Ag	1	0	0	Н
2H	1	0	0	Na	1	0	0	Co	2	0	0	Sn	2	0	0	Na
В	3	0	0	Mg	2	0	0	Cu	2	0	0	1	3	0	0	
С	4	5	100	Si	4	0	0	Se	2	0	0	lr	3	0	0	
N	3	0	10	Р	3	0	0	Br	1	0	0	Pt	2	0	0	
0	2	0	30	S	2	0	0	Pd	2	0	0					
Error Margin (ppm): 10 DBE Range: not fixed HC Ratio: unlimited Apply N Rule: no Isotope RI (%): 1.00 MSn Iso RI (%): 75.00 MSn Logic Mode: OR										Electro Use MS Isotop Max R	in Info: e Res:	yes 1000	0			

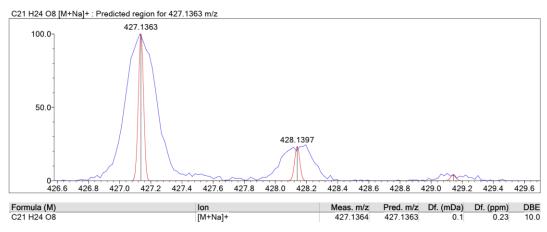
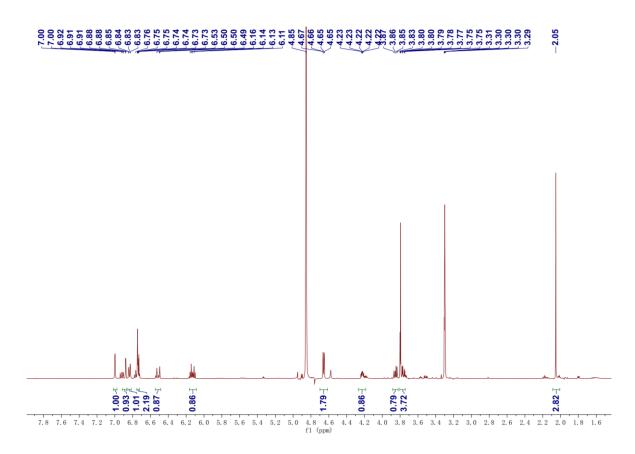
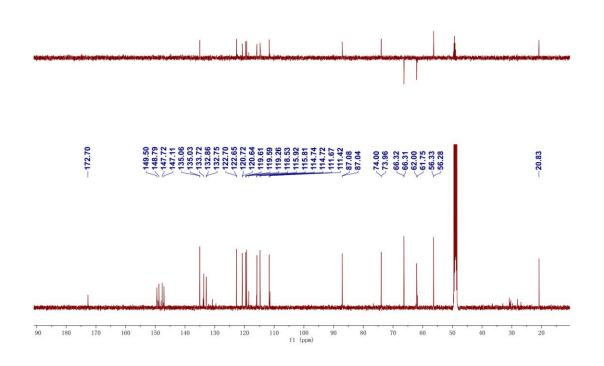




Figure S4-1: HR-ESI-MS spectrum of 4.

Figure S4-2: ¹H-NMR (600 MHz, CD₃OD) spectrum of **4**.

Figure S4-3: ¹³C-NMR and DEPT (150 MHz, CD₃OD) spectrum of **4**.

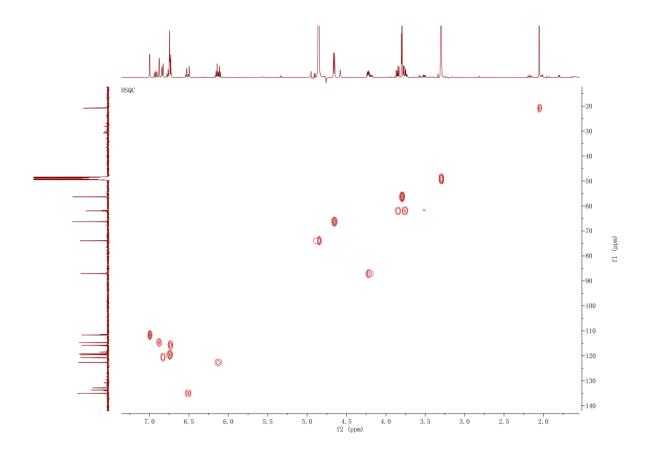
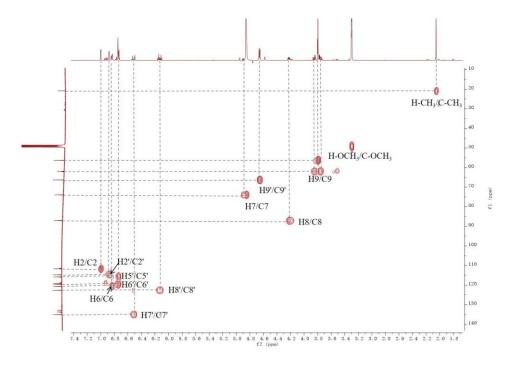



Figure S4-4: HSQC spectrum of 4.

Figure S4-5: HSQC spectrum of **4** (From $\delta_{\rm H}$ 1.5 ppm to 7.5 ppm).

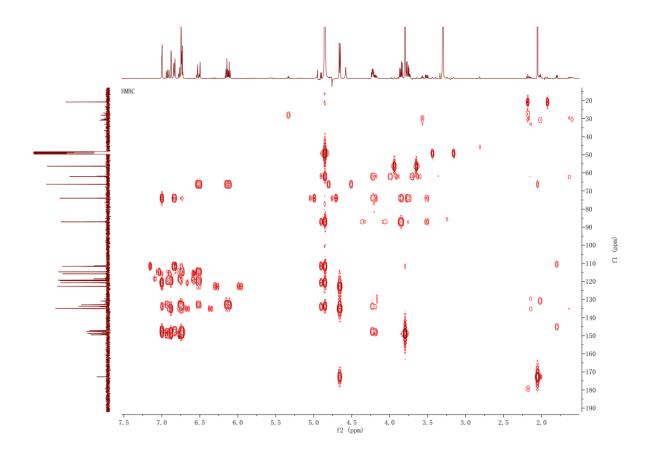
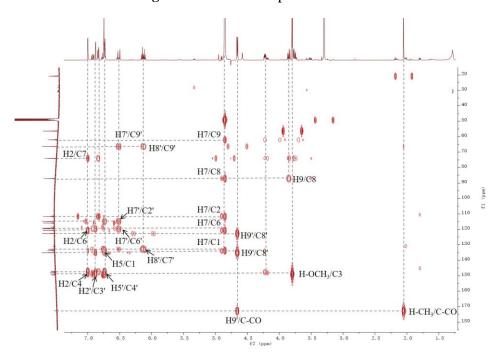
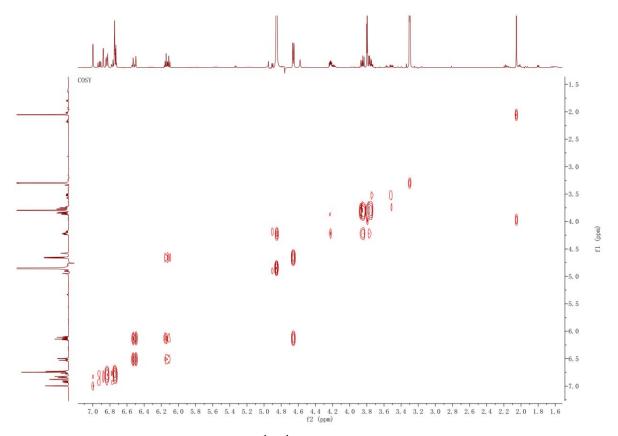




Figure S4-6: HMBC spectrum of 4.

Figure S4-7: HMBC spectrum of **4** (From $\delta_{\rm H}$ 1.0 ppm to 7.6 ppm).

Figure S4-8: ¹H-¹H COSY spectrum of **4**.

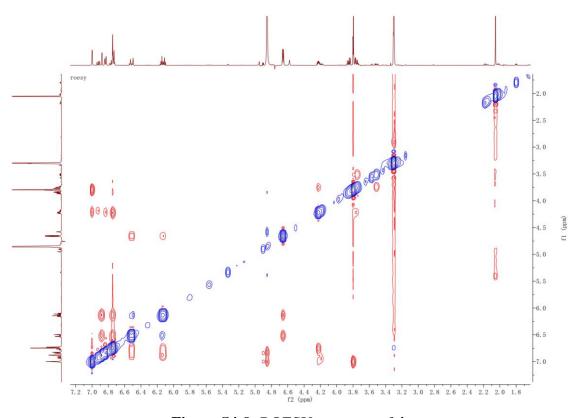


Figure S4-9: ROESY spectrum of 4.

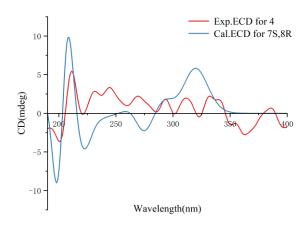


Figure S4-10: ECD spectra for compound 4.

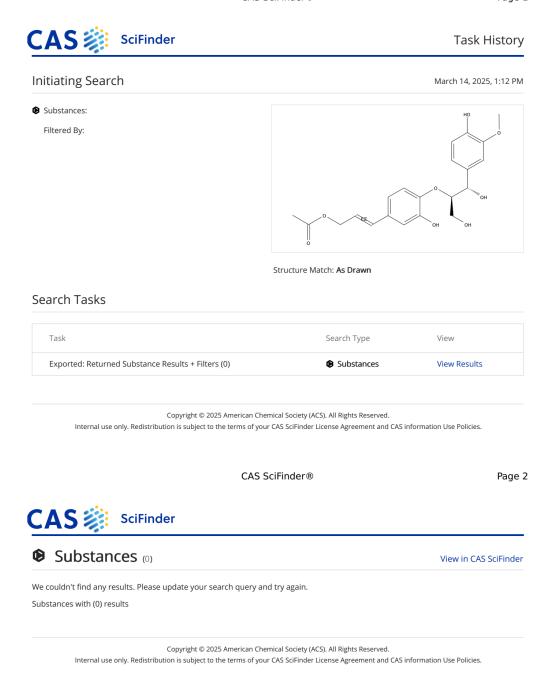


Figure S4-11: Scifinder search report of 4.

Table S4-12: The NMR spectroscopic data for **3** and **4** with similar compound **2'** (δ in ppm and J in Hz)

Dogition	3			2'					
Position	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$			
1	-	133.7	=	133.7	-	133.4			
2	6.99 (d, 1.8)	111.6	6.99 (d, 1.8)	111.7	7.04 (d, 2.0)	111.7			
3	-	148.8	-	148.8	-	147.3			
4	-	147.1	-	147.1	-	148.9			
5	6.74 (over lapped)	115.8	6.73 (over lapped)	115.8	6.78 (d, 8.0)	114.7			
6	6.83 (dd, 8.0, 1.8)	120.7	6.83 (dd, 8.1, 1.8)	120.7	6.77 (dd, 8.0, 2.0)	120.8			
7	4.84 (over lapped)	73.9	4.85 (over lapped)	74.0	4.89 (d, 7.5)	74.0			
8	4.21 (m)	87.2	4.22 (m)	87.1	4.24 (m)	87.3			
9	3.75 (m) 3.85 (m)	62.0	3.76 (dd, 11.8, 3.5) 3.86 (dd, 11.8, 6.4)	62.0	4.19 (over lapped) 4.20 (dd, 5.8, 1.4)	63.8			
1'	-	133.3	-	132.9	-	131.5			
2'	6.87 (d, 1.8)	114.7	6.87 (d, 1.8)	114.7	6.91 (d, 2.0)	114.6			
3'	-	149.5	=	149.5	-	147.1			
4'	-	147.5	-	147.7	-	133.7			
5'	6.73(over lapped)	119.4	6.74 (over lapped)	119.2	6.79(d, 8.0)	114.7			
6'	6.73(over lapped)	119.4	6.74 (over lapped)	119.5	6.87(dd, 8.0, 2.0)	119.3			
7'	6.47 (dd, 15.9, 6.1)	133.8	6.52 (dd, 15.9, 6.3)	135.0	6.48 (d, 15.8)	131.6			
8'	6.11 (m)	125.0	6.13 (m)	122.7	6.21 (m)	128.4			
9'	4.03 (dt, 6.1, 1.7)	74.2	4.66 (m)	66.3	3.79 (m) 3.89 (m)	62.0			
3 -OCH $_3$	3.80 (s)	56.3	3.79 (s)	56.4	3.83 (s)	56.4			
1"	3.34 (s)	58.2	-	172.7	-	-			
1"-CH ₃	-	-	2.05 (s)	20.8	-	-			

The ¹H and ¹³C NMR data of compound **3** and **4** were recorded at 600 MHz with CD₃OD as the solvent. Similarly, the ¹H and ¹³C NMR data of compound **2'** reported in reference [2] were obtained using CD₃OD as the solvent.

Reference:

[2] Y. J. Feng, X. X. Wang, P. Y. Zhuang, D. Y. Zhang, L. Gao, J. M. Chen, G. Han (2017). Chemical Component Research on *Codonopsis Pilosula*. *China J. Chin. Mater. Med.* **42**, 135-139.

S5-1: General Experimental Procedures.

The isolated compounds were evalutated using a 600 MHz NMR spectrometer (Bruker, Germany), with residual solvent signals serving as the internal standard. High resolution mass spectrometry (HRMS) data were acquired via LC-IT-TOFMS (Shimadzu, Japan) and LC-Orbitrap Exploris 120 (Thermo, USA) mass spectrometers. Optical rotations were measured with a P-2000 instrument (JASCO, Japan). Circular dichroism data were obtained using a P-1500 instrument (JASCO, Japan). A Waters 1525 HPLC system (Waters, USA) equipped with Waters Xbrige series C18 chromatographic columns (4.6 mm \times 250 mm and 19 mm \times 250 mm, 5 μ m) were used for liquid phase separation. Both the column chromatography silica gel (200-300 mesh) and thin layer chromatography silica gel plates were produced by Shanxi Nuotai Silica Gel Reagent Factory. The reverse filling material (20-45 mm, Fuji Silysia Chemical, Japan) was RP-18 silicone. MPLC was

conducted via an RUIHE (China) pump system equipped with RP-18 silica gel-packed glass columns ($26~\text{mm} \times 460~\text{mm}$ and $15~\text{mm} \times 230~\text{mm}$, respectively). Pharmacia Sephadex LH-20 gel material was manufactured by the Sweden Amersham Biosciences Company. The colorants used were sulfuric acid-ethanol and sulfuric acid-vanillin.