## **Supporting Information**

Rec. Nat. Prod. 19:6 (2025) 680-687

## Saganhaematenones: Novel Bioactive Natural Products, Derived from *Haematococcus* (Chlorophyceae) dSgH-K1 Strain, that Inhibit Angiotensin-Converting Enzyme

## Mikihide Demura 1,2, Toshiyasu Inuzuka3, and Yoshinori Kawazoe 4\*

<sup>1</sup> Institute of Ocean Energy, Saga University, 1 Honjo, Saga 540-8502, Japan <sup>2</sup> Saga Algal Ingustry R&D Center in Regional Innovation Center, Saga University, 1 Honjo, Saga 840-8502, Japan

<sup>3</sup> Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
<sup>4</sup> Center for Bioresource Education and Research, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan

| Table of Contents                                                                                          | Page |
|------------------------------------------------------------------------------------------------------------|------|
| Figure S1: HRMS spectrum of saganhaematenones                                                              | 2    |
| Figure S2: <sup>1</sup> H-NMR (600 MHz, CD <sub>3</sub> OD) spectrum of saganhaemetenone A                 | 3    |
| Figure S3: <sup>1</sup> H- <sup>1</sup> H COSY spectrum of saganhaematenone A                              | 4    |
| Figure S4: <sup>1</sup> H- <sup>1</sup> H TOCSY spectrum of saganhaematenone A                             | 5    |
| Figure S5: HMQC spectrum of sagahaematenone A                                                              | 6    |
| Figure S6: <sup>1</sup> H-NMR (600 MHz, CD <sub>3</sub> OD) spectrum of saganhaemetenone B                 | 7    |
| Figure S7: <sup>1</sup> H- <sup>1</sup> H COSY spectrum of saganhaematenone B                              | 8    |
| Figure S8: <sup>1</sup> H- <sup>1</sup> H TOCSY spectrum of saganhaematenone B                             | 9    |
| Figure S9: HMQC spectrum of sagahaematenone B                                                              | 10   |
| Figure S10: HMBC spectrum of saganhaematenone B                                                            | 11   |
| Figure S11: SciFinder Reports of saganhaematenones                                                         | 12   |
| Figure S12: SciFinder Similarity Report of saganhaematenones                                               | 13   |
| <b>Table S1:</b> Comparison of NMR data between saganhaematenone A and its most closely related compound 1 | 14   |



Figure S1: HRMS spectrum of saganhaematenone A (top) and saganhaematenone B (bottom)



Figure S2:  $^1\text{H-NMR}$  (600 MHz, CD<sub>3</sub>OD) spectrum of saganhaemetenone A



Figure S3: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of saganhaematenone A



Figure S4: <sup>1</sup>H-<sup>1</sup>H TOCSY spectrum of saganhaematenone A



Figure S5: HMQC spectrum of sagahaematenone A



Figure S6:  $^{1}\text{H-NMR}$  (600 MHz, CD<sub>3</sub>OD) spectrum of saganhaemetenone B



**Figure S7:** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of saganhaematenone B



Figure S8: <sup>1</sup>H-<sup>1</sup>H TOCSY spectrum of saganhaematenone A



Figure S9: HMQC spectrum of sagahaematenone B



Figure S10: HMBC spectrum of saganhaematenone B



Figure S11: SciFinder Exact Match Reports of saganhaematenones



Figure S12: SciFinder Similarity report of saganhaematenones

Table S1: Comparison of NMR data between saganhaematenone A and its most closely related compound 1

| Compound 1 <sup>†</sup> |                            |                 | Saganhaematenone A ‡ |                      |           |
|-------------------------|----------------------------|-----------------|----------------------|----------------------|-----------|
| Position                | δH (ppm, J in Hz)          | δC, (ppm, Type) | Position             | δH (ppm, J in Hz)    | δC, (ppm) |
| 1'                      | 4.26, d (7.2)              | 105.2, CH       | 1′                   | 4.22, d (7.7)        | 105.7     |
| 2′                      | 3.53, overlap              | 72.5, CH        | 2'                   | 3.52, m              | 72.7      |
| 3′                      | 3.51, dd (9.3, 2.8)        | 74.7, CH        | 3′                   | 3.45, dd (9.5, 3.1)  | 74.9      |
| 4′                      | 3.88, brs                  | 69.9, CH        | 4′                   | 3.81, brd (3.2)      | 70.6      |
| 5′                      | 3.55, m                    | 76.3, CH        | 5'                   | 3.52, m              | 77.2      |
| 6′                      | 3.76, m                    | 62.4, CH2       | 6'a                  | 3.75, m              | 62.8      |
|                         |                            |                 | 6'b                  | 3.70, m              |           |
| 1                       | 4.12, d (5.4)              | 66.1, CH2       | 1                    | 4.15, m              | 66.8      |
| 2                       | 3.94, m                    | 69.3, CH        | 2                    | 3.98, m              | 69.9      |
| 3a                      | 3.66, dd (10.7, 4.8)       | 72.1, CH2       | 3a                   | 3.64, dd (10.7, 4.6) | 72.2      |
| 3b                      | 3.82, dd (10.7, 5.5)       |                 | 3b                   | 3.91, dd (10.7, 4.7) |           |
| 1"                      |                            | 173.7, C        | 1"                   |                      | 175.8     |
| 2"                      | 2.33, t (7.4)              | 34.4, CH2       | 2"                   | 2.39, t (7.4)        | 33.7      |
| 3"                      | 1.62, overlap              | 25.1, CH2       | 3"                   | 1.66, m              | 25.6      |
| 4"                      | 1.44, m                    | 29.3, CH2       | 4"                   | 1.52, m              | 25.6      |
| 5"                      | 2.07, overlap              | 32.6 a, CH2     | 5"                   | 2.26, dt (6.6, 6.6)  | 33.3      |
| 6"                      | 5.68, dt (15.4, 6.5)       | 134.6, CH       | 6"                   | 6.91, dt (15.8, 6.6) | 149.4     |
| 7"                      | 5.41, ddt (15.4, 7.9, 1.5) | 131.2, CH       | 7"                   | 6.13, d (15.8)       | 129.9     |
| 8"                      | 4.19, m                    | 86.6, CH        | 8"                   |                      | 204.2     |
| 9″a                     | 1.41, m                    | 33.6, CH2       | 9"                   | 2.57, t (7.3)        | 38.7      |
| 9″b                     | 1.63, overlap              |                 |                      |                      |           |
| 10"                     | 1.23–1.37, m               | 26.1, CH2       | 10"                  | 1.56, m              | 23.2      |
| 11"                     | 1.23–1.37, m               | 30.0 b, CH2     | 11"                  | 1.30-1.33            | 24.2-33.3 |
| 12"                     | 1.23–1.37, m               | 30.3 b, CH2     | 12"                  | 1.30-1.34            | 24.2-33.4 |
| 13"                     | 1.23–1.37, m               | 30.4 b, CH2     | 13"                  | 1.30-1.35            | 24.2-33.5 |
| 14"                     | 1.23–1.37, m               | 32.7 a, CH2     | 14"                  | 1.30-1.36            | 24.2-33.6 |
| 15"                     | 1.23–1.37, m               | 23.3, CH2       | 15"                  | 1.30-1.37            | 24.2-33.7 |
| 16"                     | 0.88, t (6.8)              | 14.4, CH3       | 16"                  | 0.89, t (6.9)        | 14.9      |
| 8"-OOH                  | 10.31, s                   |                 |                      |                      |           |

 $<sup>^{\</sup>dagger 1}$ H (600 MHz) and  $^{13}$ C NMR (150 MHz) spectroscopic data for compound 1 in acetone-d6.

<sup>&</sup>lt;sup>‡1</sup>H (600 MHz) and <sup>13</sup>C NMR (based on the HMBC and HMQC spectra) spectroscopic data for saganhaematenone A in CD<sub>3</sub>OD.