Supporting Information

Rec. Nat. Prod. 19:6 (2025) 728-733

Heracleumate, A New Enynic Ester from the Roots of

Heracleum rapula Franch.

Ximiao Yang^{1,#}, Wenting Chen^{1,#}, Yuxiao Li^{1,3}, Ziliang Wang¹, Yanhong Li¹, Yihuai Liang², Xishan Bai^{1,*} and Xiangzhong Huang^{1,3,*}

 ¹Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
²Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan 650106, China
³Yunnan Plateau Thermal Health Industry Innovation Research Institute, Tengchong, 679100, Yunnan, China

Table of Contents	Page
Spectra data of compounds 2–5	3
Table S1: The NMR data of 1 and $(4R)$ -4-hydroxy-dodec-5-en-2-ynoic acid methyl ester	5
Table S2: Conformational analysis of twelve optimized conformers of 4S-1 at the B3LYP/6-	6
311G(d,p) level in methanol	
Figure S1: Twelve optimized conformers of 4 <i>S</i> - 1 at the B3LYP/6-311G(d,p) level in	7
methanol	
Figure S2: HR-ESI-MS spectrum of 1	8
Figure S3: IR spectrum of 1	9
Figure S4: UV spectrum of 1	10
Figure S5: ¹ H NMR (600 MHz, CDCl ₃) spectrum of 1	11
Figure S5-1 : ¹ H NMR (600 MHz, CDCl ₃) spectrum of 1 (From $\delta_{\rm H}$ 2.25 to $\delta_{\rm H}$ 0.50)	12
Figure S5-2: ¹ H NMR (600 MHz, CDCl ₃) spectrum of 1 (From $\delta_{\rm H}$ 5.80 to $\delta_{\rm H}$ 5.10)	13
Figure S6: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 1	14
Figure S6-1: 13 C-NMR (150 MHz, CDCl ₃) spectrum of 1 (From $\delta_{\rm C}$ 33.0 to $\delta_{\rm C}$ 26.0)	15
Figure S7: ¹ H- ¹ H COSY spectrum of 1	16
Figure S7-1: ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of 1 (From δ_{H} 6.00 to δ_{H} 5.00)	17
Figure S7-2: ${}^{1}\text{H}$ COSY spectrum of 1 (From δ_{H} 2.30 to δ_{H} 0.50)	18
Figure S8: HSQC spectrum of 1	19
Figure S8-1: HSQC spectrum of 1 (From $\delta_{\rm H}$ 6.00 to $\delta_{\rm H}$ 5.00)	20
Figure S8-2: HSQC spectrum of 1 (From $\delta_{\rm H}$ 3.90 to $\delta_{\rm H}$ 1.95)	21
Figure S8-3: HSQC spectrum of 1 (From $\delta_{\rm H}$ 1.70 to $\delta_{\rm H}$ 0.60)	22
Figure S9: HMBC spectrum of 1	23
Figure S9-1: HMBC spectrum of 1 ($\delta_{\rm H}$ 5.67, H-6; 5.54, H-5)	24

Figure S9-2: HMBC spectrum of 1 ($\delta_{\rm H}$ 5.25, H-4)	25
Figure S9-3: HMBC spectrum of 1 ($\delta_{\rm H}$ 3.78, OMe)	26
Figure S9-4: HMBC spectrum of 1 ($\delta_{\rm H}$ 2.14-2.10, H ₂ -7)	27
Figure S9-5: HMBC spectrum of 1 ($\delta_{\rm H}$ 0.88, H-13)	28
Figure S10: NOESY spectrum of 1	29
Figure S10-1: NOESY spectrum of 1 (δ_H 5.25, H-4)	30

9-epoxyfalcarindiol (2): light yellow oil, $\left[\alpha\right]_D^{25.4}$ +97.2 (c 0.1, MeOH); 1 H NMR (600 MHz, CDCl₃) δ 5.95 (1H, ddd, J = 17.1, 10.2, 5.4 Hz, H-2), 5.48 (1H, dt, J = 17.1, 1.2 Hz, H-1a), 5.28 (1H, dt, J = 10.2, 1.1 Hz, H-1b), 4.95 (1H, t, J = 5.7 Hz, H-3), 4.29 (1H, dd, J = 7.7, 4.1 Hz, H-8), 3.19 (1H, dd, J = 7.6, 4.3 Hz, H-10), 3.07 (1H, ddd, J = 6.9, 5.4, 4.3 Hz, H-9), 2.35 (1H, d, J = 4.7 Hz, 8-OH), 2.02 (1H, d, J = 6.6 Hz, 3-OH), 1.62 – 1.46 (4H, m, H₂-11/H₂-12), 1.37 – 1.25 (8H, m, H₂-13~16), 0.89 (3H, t, J = 6.9 Hz, H₃-17); 13 C NMR (150 MHz, CDCl₃) δ 135.7 (C-2), 117.7 (C-1), 78.9 (C-7), 76.4 (C-4), 70.8 (C-5), 70.0 (C-6), 63.6 (C-3), 62.3 (C-8), 59.7 (C-9), 57.6 (C-10), 31.9 (C-15), 29.5 (C-11), 29.3 (C-14), 28.2 (C-13), 26.8 (C-12), 22.8 (C-16), 14.2 (C-17); HRESIMS m/z 299.1616 [M+Na]⁺ (calculated for C₁₇H₂₄O₃Na⁺, 299.1618; EIMS (70 eV) m/z (rel. int.) 207 (49), 191 (13), 177 (9), 135 (33), 105 (31), 91 (63), 81 (67), 71 (57), 57 (100), 43 (59).

3(R), 8(S)-falcarindiol (3): colorless oil, $\left[\alpha\right]_D^{25.3}$ +198.6 (c 0.1, CHCl₃); 1 H NMR (600 MHz, CDCl₃) δ 5.93 (1H, ddd, J = 16.2, 10.2, 5.4 Hz, H-2), 5.60 (1H, dt, J = 11.1, 7.6 Hz, H-10), 5.51 (1H, m, H-9), 5.47 (1H, d, J = 17.1 Hz, H-1a), 5.25 (1H, d, J = 10.1 Hz, H-1b), 5.20 (1H, d, J = 8.4 Hz, H-8), 4.93 (1H, d, J = 5.4 Hz, H-3), 2.10 (2H, q, J = 7.5 Hz, H₂-11), 1.38 (2H, p, J = 7.1 Hz, H₂-12), 1.30 – 1.25 (8H, m, H₂-13~16), 0.87 (3H, t, J = 6.9 Hz, H₃-17); 13 C NMR (150 MHz, CDCl₃) δ 135.9 (C-2), 134.8 (C-10), 127.8 (C-9), 117.5 (C-1), 80.0 (C-4), 78.4 (C-7), 70.4 (C-5), 68.8 (C-6), 63.6 (C-3), 58.7 (C-8), 31.9 (C-11), 29.4 (C-12), 29.3 (C-13), 29.2 (C-14), 27.8 (C-15), 22.8 (C-16), 14.2 (C-17); HRESIMS m/z 283.1664 [M+Na]⁺ (calculated for C₁₇H₂₄O₂Na⁺, 283.1669; EIMS (70 eV) m/z (rel. int.) 207 (2),178 (29), 157 (32), 129 (100), 115 (53), 105 (31), 91 (67), 55 (60).

oplopantriol B (**4**): yellow oil, $[\alpha]_D^{25.8}$ +187.4 (*c* 0.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (1H, ddt, J = 10.6, 7.3, 1.5 Hz, H-10), 5.51 (1H, ddt, J = 10.6, 7.5, 1.5 Hz, H-9), 5.20 (1H, d, J = 8.0 Hz, H-11), 4.37 (1H, t, J = 6.6 Hz, H-16), 3.65 (2H, t, J = 6.5 Hz, H-1), 2.11 (2H, m, H-8), 1.74 (2H, m, H-17), 1.57 (2H, m, H-2), 1.39 – 1.26 (10H, m, H₂-3~7), 1.01 (3H, t, J = 7.4 Hz, H₃-18); ¹³C NMR (100 MHz, CDCl₃) δ 134.5 (C-10), 128.1 (C-9), 81.1 (C-15), 79.2 (C-12), 69.1 (C-14), 69.0 (C-13), 64.1 (C-16), 63.2 (C-1), 58.8 (C-11), 32.9 (C-2), 30.8 (C-17), 29.42(C-5), 29.3 (C-4), 29.2 (C-6), 29.0 (C-7), 27.7 (C-8), 25.7 (C-3), 9.5 (C-18); HRESIMS m/z 293.2118 [M+H]⁺ (calculated for C₁₈H₂₉O₃⁺, 293.2111).

18-*O*-acetyloplopantriol B (**5**): yellow oil, $\left[\alpha\right]_D^{25.4}$ +121.6 (*c* 0.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.93 (1H, ddd, J = 17.2, 10.2, 1.0 Hz, H-17), 5.58 (1H, ddt, J = 10.7, 7.2, 1.0 Hz, H-9), 5.51 (1H, ddt, J = 10.7, 8.1, 1.0 Hz, H-10), 5.46 (1H, dt, J = 17.2, 1.0 Hz, H-18a), 5.24 (1H, dt, J = 10.2, 1.0 Hz, H-18b), 5.19 (1H, d, J = 8.2 Hz, H-11), 4.92 (1H, d, J = 5.3 Hz, H-16), 4.05 (2H, t, J = 6.8 Hz, H-1), 2.10 (2H, m, H-8), 2.04 (3H, s, COCH₃), 1.64 – 1.57 (2H, m, H-2), 1.38 – 1.26 (10H, m, H₂-3~7); ¹³C NMR (100 MHz, CDCl₃) δ 171.7 (COCH₃), 136.0 (C-17), 134.5 (C-9), 128.0 (C-10), 117.3 (C-18), 80.0 (C-12), 78.5 (C-15), 70.3 (C-14), 68.8 (C-13), 64.9 (C-1), 63.5 (C-16), 58.6 (C-11), 29.3 (C-8), 29.2 (C-7), 29.22 (C-6), 29.1 (C-5), 28.7 (C-4), 27.7 (C-3), 25.9 (C-2), 21.2 (COCH₃); HRESIMS m/z 355.1839 [M+Na]⁺ (calculated for C₂₀H₂₈O₄Na⁺, 355.1880); EIMS (70 eV) m/z (rel. int.) 197 (7), 191 (13), 171 (13), 135 (27), 129 (82), 115 (54), 105 (34), 91 (76), 81 (48), 55 (100).

Table S1: The NMR data of 1 and (4R)-4-hydroxy-dodec-5-en-2-ynoic acid methyl ester.

ynoic acid methyl ester

(4R)-4-hydroxy-dodec-5-en-2-ynoic 1 acid methyl ester Position $\delta_{\rm H} (J \text{ in Hz})$ $\delta_{\rm C}$, mult. $\delta_{\rm H} \left(J \text{ in Hz} \right)$ $\delta_{\rm C}$, mult. 1 153.9, C 153.8, C 2 76.2, C 76.9, C 3 87.0, C 86.5, C 4 58.1, CH 5.25, d (8.4) 62.6, CH 4.94, t (6) 5 126.8, CH 5.54, ddt (10.4, 126.6, CH 5.57, ddt (15.6, 6.4, 1.5) 8.4, 1.6) 6 5.67, dtd (10.4, 135.8, CH 5.91, dtd (15.6, 6.8, 1) 135.8, CH 7.5, 1.2) 7 27.9, CH₂ 2.14-2.10, m 28.6, CH₂ 2.06, q (7.2) 8 29.4, CH₂ 1.40-1.37, m 28.8, CH₂ 1.43-1.21, m^a 9 1.33-1.25^a 28.8, CH₂ 1.43-1.21, m^a 29.3, CH₂ 10 1.33-1.25 a 31.6, CH₂ 1.43-1.21, m^a 29.2, CH₂ 11 31.9, CH₂ 1.33-1.25 a 22.5, CH₂ 1.43-1.21, m^a 12 22.8, CH₂ 1.33-1.25 a 14.0, CH₃ 0.87, t (7.2 Hz) 13 14.2, CH₃ 0.88, t (6.9 Hz) OMe 53.0, CH₃ 3.78, s 52.8, CH₃ 3.78, s

^a Overlapped signal.

Table S2: Conformational analysis of twelve optimized conformers of 4S-1 at the B3LYP/6-311G(d,p) level in methanol.

Conformer	E (Hartree)	G (kcal/mol)	Percent (%)
4 <i>S</i> - 1 -1	-772.5618542	-484789.88	19.68
4S-1-2	-772.5617699	-484789.83	18
4S- 1 -3	-772.5614247	-484789.61	12.49
4S- 1 -4	-772.561276	-484789.52	10.67
4S- 1 -5	-772.5611784	-484789.45	9.62
4S- 1 -6	-772.5610272	-484789.36	8.2
4S- 1 -7	-772.56046	-484789	4.49
4S-1-8	-772.560343	-484788.93	3.97
4S- 1 -9	-772.5602726	-484788.89	3.69
4S- 1 -10	-772.5602015	-484788.84	3.42
4S- 1 -11	-772.559983	-484788.7	2.71
4S- 1 -12	-772.5598395	-484788.61	2.33

Figure S1: Twelve optimized conformers of 4S-1 at the B3LYP/6-311G(d,p) level in methanol

Figure S2: HR-ESI-MS spectrum of 1

Figure S3: IR spectrum of 1

Figure S4: UV spectrum of 1

Figure S5: ¹H NMR (600 MHz, CDCl₃) spectrum of 1

Figure S5-1: ^1H NMR (600 MHz, CDCl₃) spectrum of **1** (From $\delta_{\rm H}$ 2.25 to $\delta_{\rm H}$ 0.50)

Figure S5-2: 1 H NMR (600 MHz, CDCl₃) spectrum of **1** (From $\delta_{\rm H}$ 5.80 to $\delta_{\rm H}$ 5.10)

Figure S6: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 1

Figure S6-1: 13 C-NMR (150 MHz, CDCl₃) spectrum of **1** (From $\delta_{\rm C}$ 33.0 to $\delta_{\rm C}$ 26.0)

Figure S7: ¹H-¹H COSY spectrum of 1

Figure S7-1: $^{1}\text{H-}^{1}\text{H COSY}$ spectrum of **1** (From δ_{H} 6.00 to δ_{H} 5.00)

Figure S7-2: $^{1}\text{H-}^{1}\text{H COSY}$ spectrum of **1** (From δ_{H} 2.30 to δ_{H} 0.50)

Figure S8: HSQC spectrum of 1

Figure S8-1: HSQC spectrum of **1** (From $\delta_{\rm H}$ 6.00 to $\delta_{\rm H}$ 5.00)

Figure S8-2: HSQC spectrum of **1** (From $\delta_{\rm H}$ 3.90 to $\delta_{\rm H}$ 1.95)

Figure S8-3: HSQC spectrum of **1** (From $\delta_{\rm H}$ 1.70 to $\delta_{\rm H}$ 0.60)

Figure S9: HMBC spectrum of 1

Figure S9-1: HMBC spectrum of **1** ($\delta_{\rm H}$ 5.67, H-6; 5.54, H-5)

Figure S9-2: HMBC spectrum of 1 ($\delta_{\rm H}$ 5.25, H-4)

Figure S9-3: HMBC spectrum of **1** ($\delta_{\rm H}$ 3.78, OMe)

Figure S9-4: HMBC spectrum of **1** ($\delta_{\rm H}$ 2.14-2.10, H₂-7)

Figure S9-5: HMBC spectrum of **1** ($\delta_{\rm H}$ 0.88, H-13)

Figure S10: NOESY spectrum of 1

Figure S10-1: NOESY spectrum of **1** ($\delta_{\rm H}$ 5.25, H-4)