Supporting Information

Rec. Nat. Prod. 19:6 (2025) 734-738

An Undescribed Ingenane Glucoside Isolated from the Roots of Euphorbia fischeriana Steud and Its Anti-inflammatory Activity

En-Zhi Liu¹ and Ling-Ling Cai^{2,*}

¹Beijing University of Chinese Medicine, Peking 100029, P. R. China

²Oriental Hospital of Beijing University of Chinese Medicine, Peking 100078, P. R. China

Table of Contents	Page			
Figure S1: ¹ H NMR spectrum of 1 recorded in DMSO-d ₆ at 600 MHz	2			
Figure S2: 13 C NMR spectrum of 1 recorded in DMSO- d_6 at 150 MHz	3			
Figure S3: DEPT spectrum of 1 recorded in DMSO- d_6 at 150 MHz	4			
Figure S4: HSQC spectrum of 1 recorded in DMSO- d_6 at 150 MHz	5			
Figure S5: HSQC spectrum of 1 recorded in DMSO- d_6 at 150 MHz (From δ_C 40 ppm to δ_C				
140 ppm)				
Figure S6 : HSQC spectrum of 1 recorded in DMSO- d_6 at 150 MHz (From δ_C 0 ppm to δ_C 55				
ppm)				
Figure S7: HMBC spectrum of 1 recorded in DMSO- d_6 at 150 MHz				
Figure S8: HMBC spectrum of 1 recorded in DMSO- d_6 at 150 MHz (From $\delta_{\rm H}$ 0.2 ppm to $\delta_{\rm H}$				
4.8 ppm)				
Figure S9: NOESY spectrum of 1 recorded in DMSO- d_6 at 600 MHz	10			
Figure S10: NOESY spectrum of 1 recorded in DMSO- d_6 at 150 MHz (From $\delta_{\rm H}$ 0.8 ppm to				
$\delta_{\rm H}$ 4.8 ppm)				
Figure S11: HRESIMS spectrum of 1	12			
Figure S12: IR spectrum of 1	13			
Figure S13: High performance liquid chromatogram of compound 1	13			
Table S1: ¹³ C NMR spectroscopic data for compounds 1 (DMSO- d_6 , δ in ppm) and 2 (CDCl ₃ , δ	14			
in ppm)				
Table S2: Crystal data and structure refinement for compound 1	15			
The SciFinder search report				

Figure S1: 1 H NMR spectrum of **1** recorded in DMSO- d_{6} at 600 MHz

Figure S2: 13 C NMR spectrum of **1** recorded in DMSO- d_6 at 150 MHz

Figure S4: HSQC spectrum of **1** recorded in DMSO- d_6 at 150 MHz

Figure S5: HSQC spectrum of **1** recorded in DMSO- d_6 at 150 MHz (From δ_C 40 ppm to δ_C 140 ppm)

Figure S6: HSQC spectrum of **1** recorded in DMSO- d_6 at 150 MHz (From δ_C 0 ppm to δ_C 55 ppm)

Figure S7: HMBC spectrum of **1** recorded in DMSO- d_6 at 150 MHz

Figure S8: HMBC spectrum of **1** recorded in DMSO- d_6 at 150 MHz (From $\delta_{\rm H}$ 0.2 ppm to $\delta_{\rm H}$ 4.8 ppm)

Figure S9: NOESY spectrum of **1** recorded in DMSO- d_6 at 600 MHz

Figure S10: NOESY spectrum of **1** recorded in DMSO- d_6 at 150 MHz (From $\delta_{\rm H}$ 0.8 ppm to $\delta_{\rm H}$ 4.8 ppm)

2024/11/26 2:10:02

Figure S11: HRESIMS spectrum of 1

Figure S12: IR spectrum of 1

Figure S13: High performance liquid chromatogram of compound ${\bf 1}$

Table S1: 13 C NMR spectroscopic data for compounds **1** (DMSO- d_{6} , δ in ppm) and **2** (CDCl₃, δ in ppm)

No.	$1 (\delta c, type)$	2 (δc, type)	No.	$1 (\delta c, type)$	2 (δc, type)
1	129.4 CH	129.5 CH	14	23.0 CH	24.4 CH
2	137.7 C	141.2 C	15	23.3 C	25.0 C
3	88.2 CH	80.8 CH	16	15.2 CH ₃	15.8 CH ₃
4	85.7 C	86.0 C	17	28.4 CH ₃	28.9 CH ₃
5	73.1 CH	75.1 CH	18	17.2 CH ₃	17.6 CH ₃
6	143.1 C	144.0 C	19	15.2 CH ₃	15.5 CH ₃
7	120.5 CH	124.4 CH	20	63.0 CH ₂	65.6 CH ₂
8	42.7 CH	45.0 CH	1'	103.2 CH	
9	206.8 C	210.6 C	2'	73.6 CH	
10	71.7 C	74.0 C	3'	77.2 CH	
11	38.1 CH	40.6 CH	4'	70.0 CH	
12	30.6 CH ₂	31.9 CH ₂	5'	76.7 CH	
13	22.7 CH	24.5 CH	6'	61.1 CH ₂	

 $\textbf{Table S2:} \ \textbf{Crystal data and structure refinement for compound 1}$

Identification code	fenweij_ gf-55-2_auto
Empirical formula	$C_{27}H_{42}O_{11}$
Formula weight	542.60
Temperature/K	297.8(3)
Crystal system	monoclinic
Space group	P2 ₁
$a/ m \mathring{A}$	6.94396(13)
$b/ m \AA$	38.6715(8)
$c/ ext{Å}$	10.24511(18)
$lpha/^{\circ}$	90
eta / $^{\circ}$	90.2545(15)
γ/°	90
$Volume/\mathring{A}^3$	2751.13(9)
Z	4
$ ho_{ m calc} { m g/cm}^3$	1.310
μ/mm^{-1}	0.843
F (000)	1168.0
Crystal size/mm ³	$0.16\times0.15\times0.12$
Radiation	Cu K α ($\lambda = 1.54184$)
2Θ range for data collection/°	4.57 to 155.172
Index ranges	$-7 \le h \le 8, -47 \le k \le 48, -12 \le$
Reflections collected	22908
Independent reflections	9147 [$R_{int} = 0.0522$, $R_{sigma} =$
Data/restraints/parameters	9147/3/733
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0612, wR_2 = 0.1695$
Final R indexes [all data]	$R_1 = 0.0657, wR_2 = 0.1734$
Largest diff. peak/hole / e Å-3	0.70/-0.31
Flack parameter	0.09(12)

The SciFinder search report