Records of Natural Products
Year: 2014 Issue: 2 April-June
p.189 - 194
Viewed 1199 times.
    Mehmet Öztürk, Gülsen Tel, Fatma Aydoğmuş Öztürk and Mehmet Emin Duru



The effects of baking practices on the fatty acid and bioactivity of edible mushrooms; namely, Lactarius delicious and Ramaria flava, naturally growing in Anatolia were investigated. Each mushroom species was divided into two parts and one of the parts was baked. Both baked and unbaked materials were extracted with hexane and methanol, successively. The fatty acid contents of baked and unbaked extracts of both species were carried out by GC and GC-MS analytical techniques. In the unbaked extracts palmitic acid (9.7-14.43%), stearic acid (41.41-6.68%), oleic acid (25.94-47.12%) and linoleic acid (22.85-9.78%) were identified as major fatty acids, respectively. In the baked extracts, however, palmitic acid (7.92-19.12%), stearic acid (49.94-6.23%), oleic acid (18.07-45.13%) and linoleic acid (23.36-9.25%) were identified as major fatty acids, as well. The antioxidative effect of the extracts of baked and unbaked mushroom species was also determined by using four complimentary assays. In addition, the extracts and the major fatty acids were also evaluated for anticholinesterase activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are the chief enzymes of Alzheimer’s disease. The baked methanol extract of R. flava showed the highest activity in DPPH scavenging, ABTS scavenging and BChE assays, while the unbaked hexane extract of R. flava exhibited the best lipid peroxidation inhibition activity. In conclusion, baking proved to have influence in nutritional values and bioactivity properties of L. delicious and R. flava. The nutrient concentration and bioactivities of L. delicious were decreased when baked; however, baked R. flavaproved to have higher nutrient concentrations and higher bioactivities than unbaked samples.

  • Lactarius delicious
  • Ramaria flava
  • Fatty acids
  • Antioxidant activity
  • Anticholinesterase activity
  • cooking effect